基于PPG传感器的液体神经网络时频解缠生物特征识别与生理分析

IF 2.2 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Zexing Zhang;Huimin Lu;Qingxin Zhao;Kai Wen;Bing Liu
{"title":"基于PPG传感器的液体神经网络时频解缠生物特征识别与生理分析","authors":"Zexing Zhang;Huimin Lu;Qingxin Zhao;Kai Wen;Bing Liu","doi":"10.1109/LSENS.2025.3590543","DOIUrl":null,"url":null,"abstract":"Photoplethysmography (PPG) sensors support both physiological monito- ring and biometric identification, making them key components in wearable sensing systems. However, real-world applications face challenges from signal nonstationarity and physiological variability. This work proposes a temporal-frequency manifold disentanglement framework to improve the robustness and accuracy of PPG-based biometric recognition. A closed-form continuous-time (CfC) liquid neural network captures temporal and spectral features from raw PPG signals, while an orthogonal manifold projection separates identity-related and physiological representations. To support physiological analysis, we construct and release a new multiphysiological PPG dataset with synchronized annotations for body mass index (BMI), blood pressure, blood glucose, and heart rate. Our method achieves 94.12% accuracy (F1-score: 0.93), outperforming eight state-of-the-art approaches. Further analysis reveals that BMI, blood glucose, and heart rate strongly influence identity features, highlighting the need for physiologically aware modeling in sensor systems. The proposed framework enhances PPG sensor signal interpretation, offering a scalable solution for real-time biometric sensing applications.","PeriodicalId":13014,"journal":{"name":"IEEE Sensors Letters","volume":"9 8","pages":"1-4"},"PeriodicalIF":2.2000,"publicationDate":"2025-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"PPG Sensor-Based Biometric Identification and Physiological Analysis via Temporal-Frequency Disentanglement With Liquid Neural Networks\",\"authors\":\"Zexing Zhang;Huimin Lu;Qingxin Zhao;Kai Wen;Bing Liu\",\"doi\":\"10.1109/LSENS.2025.3590543\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Photoplethysmography (PPG) sensors support both physiological monito- ring and biometric identification, making them key components in wearable sensing systems. However, real-world applications face challenges from signal nonstationarity and physiological variability. This work proposes a temporal-frequency manifold disentanglement framework to improve the robustness and accuracy of PPG-based biometric recognition. A closed-form continuous-time (CfC) liquid neural network captures temporal and spectral features from raw PPG signals, while an orthogonal manifold projection separates identity-related and physiological representations. To support physiological analysis, we construct and release a new multiphysiological PPG dataset with synchronized annotations for body mass index (BMI), blood pressure, blood glucose, and heart rate. Our method achieves 94.12% accuracy (F1-score: 0.93), outperforming eight state-of-the-art approaches. Further analysis reveals that BMI, blood glucose, and heart rate strongly influence identity features, highlighting the need for physiologically aware modeling in sensor systems. The proposed framework enhances PPG sensor signal interpretation, offering a scalable solution for real-time biometric sensing applications.\",\"PeriodicalId\":13014,\"journal\":{\"name\":\"IEEE Sensors Letters\",\"volume\":\"9 8\",\"pages\":\"1-4\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2025-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Sensors Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11083760/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Sensors Letters","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/11083760/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

光体积脉搏波(PPG)传感器支持生理监测环和生物识别,使其成为可穿戴传感系统的关键部件。然而,实际应用面临着信号非平稳性和生理变异性的挑战。为了提高基于ppg的生物特征识别的鲁棒性和准确性,本文提出了一种时间-频率流形解纠缠框架。封闭形式的连续时间(CfC)液体神经网络捕获原始PPG信号的时间和光谱特征,而正交流形投影分离身份相关和生理表征。为了支持生理分析,我们构建并发布了一个新的多生理PPG数据集,其中包含身体质量指数(BMI)、血压、血糖和心率的同步注释。我们的方法达到了94.12%的准确率(F1-score: 0.93),优于8种最先进的方法。进一步的分析表明,BMI、血糖和心率强烈影响身份特征,强调了传感器系统中生理感知建模的必要性。提出的框架增强了PPG传感器信号的解释,为实时生物识别传感应用提供了可扩展的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
PPG Sensor-Based Biometric Identification and Physiological Analysis via Temporal-Frequency Disentanglement With Liquid Neural Networks
Photoplethysmography (PPG) sensors support both physiological monito- ring and biometric identification, making them key components in wearable sensing systems. However, real-world applications face challenges from signal nonstationarity and physiological variability. This work proposes a temporal-frequency manifold disentanglement framework to improve the robustness and accuracy of PPG-based biometric recognition. A closed-form continuous-time (CfC) liquid neural network captures temporal and spectral features from raw PPG signals, while an orthogonal manifold projection separates identity-related and physiological representations. To support physiological analysis, we construct and release a new multiphysiological PPG dataset with synchronized annotations for body mass index (BMI), blood pressure, blood glucose, and heart rate. Our method achieves 94.12% accuracy (F1-score: 0.93), outperforming eight state-of-the-art approaches. Further analysis reveals that BMI, blood glucose, and heart rate strongly influence identity features, highlighting the need for physiologically aware modeling in sensor systems. The proposed framework enhances PPG sensor signal interpretation, offering a scalable solution for real-time biometric sensing applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Sensors Letters
IEEE Sensors Letters Engineering-Electrical and Electronic Engineering
CiteScore
3.50
自引率
7.10%
发文量
194
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信