考虑频率安全约束的风险规避调度的benders组合安全强化学习框架

IF 4.9 2区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Jianbing Feng;Zhouyang Ren;Chen Li;Wenyuan Li
{"title":"考虑频率安全约束的风险规避调度的benders组合安全强化学习框架","authors":"Jianbing Feng;Zhouyang Ren;Chen Li;Wenyuan Li","doi":"10.1109/TCSII.2025.3584894","DOIUrl":null,"url":null,"abstract":"Risk-averse dispatch considering frequency security constraints (FSC-RD) mitigates power supply-demand imbalance risks and frequency instability hazards. To effectively address the highly complex, multi-task coupled FSC-RD, this brief proposes a Benders-combined constrained Markov decision process (BC-CMDP) framework, which integrates logic-based Benders decomposition and safe reinforcement learning. A natural policy gradient primal-dual optimization is developed to handle the nonconvex policy optimization within the BC-CMDP. The global non-asymptotic convergence of the BC-CMDP framework is rigorously proven. The proposed framework is validated on the IEEE 118-bus system.","PeriodicalId":13101,"journal":{"name":"IEEE Transactions on Circuits and Systems II: Express Briefs","volume":"72 8","pages":"1063-1067"},"PeriodicalIF":4.9000,"publicationDate":"2025-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Benders-Combined Safe Reinforcement Learning Framework for Risk-Averse Dispatch Considering Frequency Security Constraints\",\"authors\":\"Jianbing Feng;Zhouyang Ren;Chen Li;Wenyuan Li\",\"doi\":\"10.1109/TCSII.2025.3584894\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Risk-averse dispatch considering frequency security constraints (FSC-RD) mitigates power supply-demand imbalance risks and frequency instability hazards. To effectively address the highly complex, multi-task coupled FSC-RD, this brief proposes a Benders-combined constrained Markov decision process (BC-CMDP) framework, which integrates logic-based Benders decomposition and safe reinforcement learning. A natural policy gradient primal-dual optimization is developed to handle the nonconvex policy optimization within the BC-CMDP. The global non-asymptotic convergence of the BC-CMDP framework is rigorously proven. The proposed framework is validated on the IEEE 118-bus system.\",\"PeriodicalId\":13101,\"journal\":{\"name\":\"IEEE Transactions on Circuits and Systems II: Express Briefs\",\"volume\":\"72 8\",\"pages\":\"1063-1067\"},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2025-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Circuits and Systems II: Express Briefs\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11062567/\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Circuits and Systems II: Express Briefs","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/11062567/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

考虑频率安全约束的风险规避调度(FSC-RD)减轻了电力供需不平衡风险和频率不稳定风险。为了有效地解决高度复杂的多任务耦合FSC-RD,本文提出了一个Benders组合约束马尔可夫决策过程(BC-CMDP)框架,该框架集成了基于逻辑的Benders分解和安全强化学习。针对BC-CMDP中的非凸策略优化问题,提出了一种自然策略梯度原对偶优化方法。严格证明了BC-CMDP框架的全局非渐近收敛性。该框架在IEEE 118总线系统上得到了验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Benders-Combined Safe Reinforcement Learning Framework for Risk-Averse Dispatch Considering Frequency Security Constraints
Risk-averse dispatch considering frequency security constraints (FSC-RD) mitigates power supply-demand imbalance risks and frequency instability hazards. To effectively address the highly complex, multi-task coupled FSC-RD, this brief proposes a Benders-combined constrained Markov decision process (BC-CMDP) framework, which integrates logic-based Benders decomposition and safe reinforcement learning. A natural policy gradient primal-dual optimization is developed to handle the nonconvex policy optimization within the BC-CMDP. The global non-asymptotic convergence of the BC-CMDP framework is rigorously proven. The proposed framework is validated on the IEEE 118-bus system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Circuits and Systems II: Express Briefs
IEEE Transactions on Circuits and Systems II: Express Briefs 工程技术-工程:电子与电气
CiteScore
7.90
自引率
20.50%
发文量
883
审稿时长
3.0 months
期刊介绍: TCAS II publishes brief papers in the field specified by the theory, analysis, design, and practical implementations of circuits, and the application of circuit techniques to systems and to signal processing. Included is the whole spectrum from basic scientific theory to industrial applications. The field of interest covered includes: Circuits: Analog, Digital and Mixed Signal Circuits and Systems Nonlinear Circuits and Systems, Integrated Sensors, MEMS and Systems on Chip, Nanoscale Circuits and Systems, Optoelectronic Circuits and Systems, Power Electronics and Systems Software for Analog-and-Logic Circuits and Systems Control aspects of Circuits and Systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信