一种多模态驱动的情感识别融合数据增强框架

Ao Li;Minchao Wu;Rui Ouyang;Yongming Wang;Fan Li;Zhao Lv
{"title":"一种多模态驱动的情感识别融合数据增强框架","authors":"Ao Li;Minchao Wu;Rui Ouyang;Yongming Wang;Fan Li;Zhao Lv","doi":"10.1109/TAI.2025.3537965","DOIUrl":null,"url":null,"abstract":"The pursuit of imbuing computers with emotional intelligence has driven extensive research into physiological signal analysis for emotion recognition. Deep learning techniques offer promising avenues for analyzing physiological signals in this domain. Despite numerous studies on emotion recognition using various physiological signals, challenges persist in classifying multimodal physiological signals due to data scarcity. Current research lacks focus on addressing data insufficiency for multimodal physiological signals. This article proposes an innovative method to address this issue and improve the effect of emotion recognition using multimodal physiological signal data. Our model comprises a physiological signal encoder, a multimodal data generator, and a multimodal emotion recognizer. Specifically, we introduce a customized ConvNeXt-attention fusion model (CNXAF) to fuse diverse physiological signals, generating fused multimodal data. The multimodal data generator employs a conditional self-attention generative adversarial network (c-SAGAN) to synthesize additional data across different categories, augmenting original datasets. Finally, the multimodal emotion recognizer utilizes the ConvNeXt-t classifier for emotion recognition on the extended dataset. Through extensive experimentation, our model achieves accuracies of 96.06<inline-formula><tex-math>$\\%$</tex-math></inline-formula> on the DEAP dataset and 95.70<inline-formula><tex-math>$\\%$</tex-math></inline-formula> on the WESAD dataset, demonstrating the effectiveness of our approach in accurately recognizing emotions. Experimental results underscore the superior performance of our method compared to existing approaches in multimodal emotion recognition research.","PeriodicalId":73305,"journal":{"name":"IEEE transactions on artificial intelligence","volume":"6 8","pages":"2083-2097"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Multimodal-Driven Fusion Data Augmentation Framework for Emotion Recognition\",\"authors\":\"Ao Li;Minchao Wu;Rui Ouyang;Yongming Wang;Fan Li;Zhao Lv\",\"doi\":\"10.1109/TAI.2025.3537965\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The pursuit of imbuing computers with emotional intelligence has driven extensive research into physiological signal analysis for emotion recognition. Deep learning techniques offer promising avenues for analyzing physiological signals in this domain. Despite numerous studies on emotion recognition using various physiological signals, challenges persist in classifying multimodal physiological signals due to data scarcity. Current research lacks focus on addressing data insufficiency for multimodal physiological signals. This article proposes an innovative method to address this issue and improve the effect of emotion recognition using multimodal physiological signal data. Our model comprises a physiological signal encoder, a multimodal data generator, and a multimodal emotion recognizer. Specifically, we introduce a customized ConvNeXt-attention fusion model (CNXAF) to fuse diverse physiological signals, generating fused multimodal data. The multimodal data generator employs a conditional self-attention generative adversarial network (c-SAGAN) to synthesize additional data across different categories, augmenting original datasets. Finally, the multimodal emotion recognizer utilizes the ConvNeXt-t classifier for emotion recognition on the extended dataset. Through extensive experimentation, our model achieves accuracies of 96.06<inline-formula><tex-math>$\\\\%$</tex-math></inline-formula> on the DEAP dataset and 95.70<inline-formula><tex-math>$\\\\%$</tex-math></inline-formula> on the WESAD dataset, demonstrating the effectiveness of our approach in accurately recognizing emotions. Experimental results underscore the superior performance of our method compared to existing approaches in multimodal emotion recognition research.\",\"PeriodicalId\":73305,\"journal\":{\"name\":\"IEEE transactions on artificial intelligence\",\"volume\":\"6 8\",\"pages\":\"2083-2097\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-02-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE transactions on artificial intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10896942/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on artificial intelligence","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10896942/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

对赋予计算机情感智能的追求推动了对情感识别的生理信号分析的广泛研究。深度学习技术为这一领域的生理信号分析提供了很有前途的途径。尽管利用各种生理信号对情绪识别进行了大量研究,但由于数据缺乏,对多模态生理信号进行分类仍然存在挑战。目前的研究缺乏对多模态生理信号数据不足的关注。本文提出了一种创新的方法来解决这一问题,并利用多模态生理信号数据来提高情绪识别的效果。我们的模型包括一个生理信号编码器、一个多模态数据生成器和一个多模态情感识别器。具体来说,我们引入了一个定制的ConvNeXt-attention融合模型(CNXAF)来融合不同的生理信号,生成融合的多模态数据。多模态数据生成器采用条件自关注生成对抗网络(c-SAGAN)来合成不同类别的附加数据,增强原始数据集。最后,多模态情感识别器利用ConvNeXt-t分类器对扩展数据集进行情感识别。通过大量的实验,我们的模型在DEAP数据集上达到96.06美元\%美元的准确率,在WESAD数据集上达到95.70美元\%美元的准确率,证明了我们的方法在准确识别情绪方面的有效性。实验结果表明,该方法在多模态情绪识别研究中具有较好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Multimodal-Driven Fusion Data Augmentation Framework for Emotion Recognition
The pursuit of imbuing computers with emotional intelligence has driven extensive research into physiological signal analysis for emotion recognition. Deep learning techniques offer promising avenues for analyzing physiological signals in this domain. Despite numerous studies on emotion recognition using various physiological signals, challenges persist in classifying multimodal physiological signals due to data scarcity. Current research lacks focus on addressing data insufficiency for multimodal physiological signals. This article proposes an innovative method to address this issue and improve the effect of emotion recognition using multimodal physiological signal data. Our model comprises a physiological signal encoder, a multimodal data generator, and a multimodal emotion recognizer. Specifically, we introduce a customized ConvNeXt-attention fusion model (CNXAF) to fuse diverse physiological signals, generating fused multimodal data. The multimodal data generator employs a conditional self-attention generative adversarial network (c-SAGAN) to synthesize additional data across different categories, augmenting original datasets. Finally, the multimodal emotion recognizer utilizes the ConvNeXt-t classifier for emotion recognition on the extended dataset. Through extensive experimentation, our model achieves accuracies of 96.06$\%$ on the DEAP dataset and 95.70$\%$ on the WESAD dataset, demonstrating the effectiveness of our approach in accurately recognizing emotions. Experimental results underscore the superior performance of our method compared to existing approaches in multimodal emotion recognition research.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信