动态恶意软件行为的生成对抗网络:全面回顾,分类和分析

Ghebrebrhan Gebrehans;Naveed Ilyas;Khouloud Eledlebi;Willian Tessaro Lunardi;Martin Andreoni;Chan Yeob Yeun;Ernesto Damiani
{"title":"动态恶意软件行为的生成对抗网络:全面回顾,分类和分析","authors":"Ghebrebrhan Gebrehans;Naveed Ilyas;Khouloud Eledlebi;Willian Tessaro Lunardi;Martin Andreoni;Chan Yeob Yeun;Ernesto Damiani","doi":"10.1109/TAI.2025.3537966","DOIUrl":null,"url":null,"abstract":"This article highlights the critical role of machine learning (ML) in combating the dynamic nature of cybersecurity threats. Unlike previous studies focusing mainly on static analysis, this work surveys the literature on dynamic analysis-based malware generation and detection. The study addresses the complexities of applying GANs to tabular data with heavy-tailed and multimodal distributions. It also examines the challenges of generating sequential malware behavior data and categorizes GAN-based models and their primary use cases. Furthermore, the article evaluates adversarial losses and their limitations in generating dynamic malware behavior. Finally, it identifies existing metrics to assess GAN generalization in malware research and suggests future research directions based on identified limitations.","PeriodicalId":73305,"journal":{"name":"IEEE transactions on artificial intelligence","volume":"6 8","pages":"1955-1976"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10870477","citationCount":"0","resultStr":"{\"title\":\"Generative Adversarial Networks for Dynamic Malware Behavior: A Comprehensive Review, Categorization, and Analysis\",\"authors\":\"Ghebrebrhan Gebrehans;Naveed Ilyas;Khouloud Eledlebi;Willian Tessaro Lunardi;Martin Andreoni;Chan Yeob Yeun;Ernesto Damiani\",\"doi\":\"10.1109/TAI.2025.3537966\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article highlights the critical role of machine learning (ML) in combating the dynamic nature of cybersecurity threats. Unlike previous studies focusing mainly on static analysis, this work surveys the literature on dynamic analysis-based malware generation and detection. The study addresses the complexities of applying GANs to tabular data with heavy-tailed and multimodal distributions. It also examines the challenges of generating sequential malware behavior data and categorizes GAN-based models and their primary use cases. Furthermore, the article evaluates adversarial losses and their limitations in generating dynamic malware behavior. Finally, it identifies existing metrics to assess GAN generalization in malware research and suggests future research directions based on identified limitations.\",\"PeriodicalId\":73305,\"journal\":{\"name\":\"IEEE transactions on artificial intelligence\",\"volume\":\"6 8\",\"pages\":\"1955-1976\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-02-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10870477\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE transactions on artificial intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10870477/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on artificial intelligence","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10870477/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文强调了机器学习(ML)在对抗网络安全威胁的动态特性方面的关键作用。与以往主要关注静态分析的研究不同,这项工作调查了基于动态分析的恶意软件生成和检测的文献。该研究解决了将gan应用于具有重尾分布和多模态分布的表格数据的复杂性。它还研究了生成连续恶意软件行为数据的挑战,并对基于gan的模型及其主要用例进行了分类。此外,本文还评估了对抗性损失及其在生成动态恶意软件行为方面的局限性。最后,它确定了评估恶意软件研究中GAN泛化的现有指标,并根据确定的局限性提出了未来的研究方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Generative Adversarial Networks for Dynamic Malware Behavior: A Comprehensive Review, Categorization, and Analysis
This article highlights the critical role of machine learning (ML) in combating the dynamic nature of cybersecurity threats. Unlike previous studies focusing mainly on static analysis, this work surveys the literature on dynamic analysis-based malware generation and detection. The study addresses the complexities of applying GANs to tabular data with heavy-tailed and multimodal distributions. It also examines the challenges of generating sequential malware behavior data and categorizes GAN-based models and their primary use cases. Furthermore, the article evaluates adversarial losses and their limitations in generating dynamic malware behavior. Finally, it identifies existing metrics to assess GAN generalization in malware research and suggests future research directions based on identified limitations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信