用于多功能可穿戴压力监测的芯-鞘石墨烯纱线传感器

IF 4.3 2区 综合性期刊 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Zhengwei Jia;Xiaoping Lin;Hao Liu
{"title":"用于多功能可穿戴压力监测的芯-鞘石墨烯纱线传感器","authors":"Zhengwei Jia;Xiaoping Lin;Hao Liu","doi":"10.1109/JSEN.2025.3579215","DOIUrl":null,"url":null,"abstract":"To address the demand for high-performance flexible pressure sensors in wearable electronics, this study proposes a fabrication method for graphene-wrapped yarn piezoresistive sensors with a core-sheath structure. Using a stainless-steel sewing thread as the conductive core and graphene-coated conductive nylon monofilament as the functional wrapping layer, the yarn twist parameters (1500–3500 T/m) were optimized through controlled wrapping process to systematically investigate the structure-performance quantitative relationship. Results demonstrate that the 3000-T/m sample exhibits optimal sensitivity in the medium-to-high pressure range (1–25 N; <inline-formula> <tex-math>${S} =0.037$ </tex-math></inline-formula>/N at 25 N), whereas the 2500-T/m sample achieves significantly enhanced sensitivity in low-pressure regime (<1.0> <tex-math>${S} =9.37$ </tex-math></inline-formula>/N at 0.05 N), representing a nearly threefold improvement over its 1500 T/m counterpart (<1.0> <tex-math>${S} =3.12$ </tex-math></inline-formula>/N at 0.05 N). Moreover, the sensor demonstrates broad detection range (0.01–25 N), fast response time (0.4 s), and excellent cycling stability (no degradation after 7000 compression cycles). Through embroidery and weaving techniques, we fabricated finger-joint motion-monitoring gloves, plantar pressure-sensing insoles, and a <inline-formula> <tex-math>$16\\times 16$ </tex-math></inline-formula> sitting posture pressure matrix, validating its multiscale application potential in human motion capture and body pressure monitoring. This work provides a novel strategy for developing highly sensitive and customizable textile-based electronic sensors, advancing the practical implementation of wearable health monitoring technologies.","PeriodicalId":447,"journal":{"name":"IEEE Sensors Journal","volume":"25 15","pages":"29744-29751"},"PeriodicalIF":4.3000,"publicationDate":"2025-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Core-Sheath Graphene Yarn Sensors for Versatile Wearable Pressure Monitoring\",\"authors\":\"Zhengwei Jia;Xiaoping Lin;Hao Liu\",\"doi\":\"10.1109/JSEN.2025.3579215\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To address the demand for high-performance flexible pressure sensors in wearable electronics, this study proposes a fabrication method for graphene-wrapped yarn piezoresistive sensors with a core-sheath structure. Using a stainless-steel sewing thread as the conductive core and graphene-coated conductive nylon monofilament as the functional wrapping layer, the yarn twist parameters (1500–3500 T/m) were optimized through controlled wrapping process to systematically investigate the structure-performance quantitative relationship. Results demonstrate that the 3000-T/m sample exhibits optimal sensitivity in the medium-to-high pressure range (1–25 N; <inline-formula> <tex-math>${S} =0.037$ </tex-math></inline-formula>/N at 25 N), whereas the 2500-T/m sample achieves significantly enhanced sensitivity in low-pressure regime (<1.0> <tex-math>${S} =9.37$ </tex-math></inline-formula>/N at 0.05 N), representing a nearly threefold improvement over its 1500 T/m counterpart (<1.0> <tex-math>${S} =3.12$ </tex-math></inline-formula>/N at 0.05 N). Moreover, the sensor demonstrates broad detection range (0.01–25 N), fast response time (0.4 s), and excellent cycling stability (no degradation after 7000 compression cycles). Through embroidery and weaving techniques, we fabricated finger-joint motion-monitoring gloves, plantar pressure-sensing insoles, and a <inline-formula> <tex-math>$16\\\\times 16$ </tex-math></inline-formula> sitting posture pressure matrix, validating its multiscale application potential in human motion capture and body pressure monitoring. This work provides a novel strategy for developing highly sensitive and customizable textile-based electronic sensors, advancing the practical implementation of wearable health monitoring technologies.\",\"PeriodicalId\":447,\"journal\":{\"name\":\"IEEE Sensors Journal\",\"volume\":\"25 15\",\"pages\":\"29744-29751\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2025-06-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Sensors Journal\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11040142/\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Sensors Journal","FirstCategoryId":"103","ListUrlMain":"https://ieeexplore.ieee.org/document/11040142/","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

为了满足可穿戴电子产品对高性能柔性压力传感器的需求,本研究提出了一种具有芯鞘结构的石墨烯包裹纱线压阻传感器的制造方法。以不锈钢缝纫线为导电芯,石墨烯包覆导电尼龙单丝为功能包绕层,通过控制包绕工艺优化纱线捻度参数(1500 ~ 3500t /m),系统研究结构-性能的定量关系。结果表明,3000-T/m样品在中高压范围内(1-25 N;${S} =0.037$ /N (25 N)),而2500-T/m样品在低压状态下的灵敏度显著提高(${S} =9.37$ /N, 0.05 N),比1500 T/m样品(${S} =3.12$ /N, 0.05 N)提高了近三倍。此外,该传感器具有宽检测范围(0.01-25 N),快速响应时间(0.4 s)和出色的循环稳定性(经过7000次压缩循环后无退化)。通过刺绣和编织技术,我们制作了手指关节运动监测手套、足底压力感应鞋垫和16 × 16美元的坐姿压力矩阵,验证了其在人体运动捕捉和身体压力监测方面的多尺度应用潜力。这项工作为开发高灵敏度和可定制的基于纺织品的电子传感器提供了一种新的策略,促进了可穿戴健康监测技术的实际实施。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Core-Sheath Graphene Yarn Sensors for Versatile Wearable Pressure Monitoring
To address the demand for high-performance flexible pressure sensors in wearable electronics, this study proposes a fabrication method for graphene-wrapped yarn piezoresistive sensors with a core-sheath structure. Using a stainless-steel sewing thread as the conductive core and graphene-coated conductive nylon monofilament as the functional wrapping layer, the yarn twist parameters (1500–3500 T/m) were optimized through controlled wrapping process to systematically investigate the structure-performance quantitative relationship. Results demonstrate that the 3000-T/m sample exhibits optimal sensitivity in the medium-to-high pressure range (1–25 N; ${S} =0.037$ /N at 25 N), whereas the 2500-T/m sample achieves significantly enhanced sensitivity in low-pressure regime (<1.0> ${S} =9.37$ /N at 0.05 N), representing a nearly threefold improvement over its 1500 T/m counterpart (<1.0> ${S} =3.12$ /N at 0.05 N). Moreover, the sensor demonstrates broad detection range (0.01–25 N), fast response time (0.4 s), and excellent cycling stability (no degradation after 7000 compression cycles). Through embroidery and weaving techniques, we fabricated finger-joint motion-monitoring gloves, plantar pressure-sensing insoles, and a $16\times 16$ sitting posture pressure matrix, validating its multiscale application potential in human motion capture and body pressure monitoring. This work provides a novel strategy for developing highly sensitive and customizable textile-based electronic sensors, advancing the practical implementation of wearable health monitoring technologies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Sensors Journal
IEEE Sensors Journal 工程技术-工程:电子与电气
CiteScore
7.70
自引率
14.00%
发文量
2058
审稿时长
5.2 months
期刊介绍: The fields of interest of the IEEE Sensors Journal are the theory, design , fabrication, manufacturing and applications of devices for sensing and transducing physical, chemical and biological phenomena, with emphasis on the electronics and physics aspect of sensors and integrated sensors-actuators. IEEE Sensors Journal deals with the following: -Sensor Phenomenology, Modelling, and Evaluation -Sensor Materials, Processing, and Fabrication -Chemical and Gas Sensors -Microfluidics and Biosensors -Optical Sensors -Physical Sensors: Temperature, Mechanical, Magnetic, and others -Acoustic and Ultrasonic Sensors -Sensor Packaging -Sensor Networks -Sensor Applications -Sensor Systems: Signals, Processing, and Interfaces -Actuators and Sensor Power Systems -Sensor Signal Processing for high precision and stability (amplification, filtering, linearization, modulation/demodulation) and under harsh conditions (EMC, radiation, humidity, temperature); energy consumption/harvesting -Sensor Data Processing (soft computing with sensor data, e.g., pattern recognition, machine learning, evolutionary computation; sensor data fusion, processing of wave e.g., electromagnetic and acoustic; and non-wave, e.g., chemical, gravity, particle, thermal, radiative and non-radiative sensor data, detection, estimation and classification based on sensor data) -Sensors in Industrial Practice
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信