Jinjian Feng;Yang Jiang;Jing Xu;Xiaohong Lan;Qianyou Long;Yunkun Luo
{"title":"基于比较器的柔性可调三角和方波的光子生成","authors":"Jinjian Feng;Yang Jiang;Jing Xu;Xiaohong Lan;Qianyou Long;Yunkun Luo","doi":"10.1109/JPHOT.2025.3591879","DOIUrl":null,"url":null,"abstract":"A photonic approach to generating triangular and square waveforms using a comparator is proposed. Beginning with a sinusoidal waveform, a comparator comprising two Mach-Zehnder modulators converts the sinusoidal waveform into a square waveform with a 50% duty cycle. Through subsequent multiplication, delayed superposition, and integration operations, square waveforms with duty cycles ranging from 20% to 80% and triangular waveforms with symmetry factors ranging from 20% to 80% are achieved. Adjusting the delay enables flexible tuning of both the duty cycle and symmetry factor. Moreover, frequency-doubled waveforms can be generated by modifying the delay. Detailed theoretical analysis is developed, and the experimental results align closely with theoretical predictions, effectively validating the proposed scheme. This approach offers the advantage of flexible adjustment and generates waveforms entirely through time-domain operations, which better preserves the time-domain characteristics of the waveforms and bypasses the complicated consideration of the amplitudes and phases of harmonic components.","PeriodicalId":13204,"journal":{"name":"IEEE Photonics Journal","volume":"17 4","pages":"1-10"},"PeriodicalIF":2.4000,"publicationDate":"2025-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11090012","citationCount":"0","resultStr":"{\"title\":\"Photonic Generation of Flexible and Adjustable Triangular and Square Waveforms Based on a Comparator\",\"authors\":\"Jinjian Feng;Yang Jiang;Jing Xu;Xiaohong Lan;Qianyou Long;Yunkun Luo\",\"doi\":\"10.1109/JPHOT.2025.3591879\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A photonic approach to generating triangular and square waveforms using a comparator is proposed. Beginning with a sinusoidal waveform, a comparator comprising two Mach-Zehnder modulators converts the sinusoidal waveform into a square waveform with a 50% duty cycle. Through subsequent multiplication, delayed superposition, and integration operations, square waveforms with duty cycles ranging from 20% to 80% and triangular waveforms with symmetry factors ranging from 20% to 80% are achieved. Adjusting the delay enables flexible tuning of both the duty cycle and symmetry factor. Moreover, frequency-doubled waveforms can be generated by modifying the delay. Detailed theoretical analysis is developed, and the experimental results align closely with theoretical predictions, effectively validating the proposed scheme. This approach offers the advantage of flexible adjustment and generates waveforms entirely through time-domain operations, which better preserves the time-domain characteristics of the waveforms and bypasses the complicated consideration of the amplitudes and phases of harmonic components.\",\"PeriodicalId\":13204,\"journal\":{\"name\":\"IEEE Photonics Journal\",\"volume\":\"17 4\",\"pages\":\"1-10\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2025-07-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11090012\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Photonics Journal\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11090012/\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Photonics Journal","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/11090012/","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Photonic Generation of Flexible and Adjustable Triangular and Square Waveforms Based on a Comparator
A photonic approach to generating triangular and square waveforms using a comparator is proposed. Beginning with a sinusoidal waveform, a comparator comprising two Mach-Zehnder modulators converts the sinusoidal waveform into a square waveform with a 50% duty cycle. Through subsequent multiplication, delayed superposition, and integration operations, square waveforms with duty cycles ranging from 20% to 80% and triangular waveforms with symmetry factors ranging from 20% to 80% are achieved. Adjusting the delay enables flexible tuning of both the duty cycle and symmetry factor. Moreover, frequency-doubled waveforms can be generated by modifying the delay. Detailed theoretical analysis is developed, and the experimental results align closely with theoretical predictions, effectively validating the proposed scheme. This approach offers the advantage of flexible adjustment and generates waveforms entirely through time-domain operations, which better preserves the time-domain characteristics of the waveforms and bypasses the complicated consideration of the amplitudes and phases of harmonic components.
期刊介绍:
Breakthroughs in the generation of light and in its control and utilization have given rise to the field of Photonics, a rapidly expanding area of science and technology with major technological and economic impact. Photonics integrates quantum electronics and optics to accelerate progress in the generation of novel photon sources and in their utilization in emerging applications at the micro and nano scales spanning from the far-infrared/THz to the x-ray region of the electromagnetic spectrum. IEEE Photonics Journal is an online-only journal dedicated to the rapid disclosure of top-quality peer-reviewed research at the forefront of all areas of photonics. Contributions addressing issues ranging from fundamental understanding to emerging technologies and applications are within the scope of the Journal. The Journal includes topics in: Photon sources from far infrared to X-rays, Photonics materials and engineered photonic structures, Integrated optics and optoelectronic, Ultrafast, attosecond, high field and short wavelength photonics, Biophotonics, including DNA photonics, Nanophotonics, Magnetophotonics, Fundamentals of light propagation and interaction; nonlinear effects, Optical data storage, Fiber optics and optical communications devices, systems, and technologies, Micro Opto Electro Mechanical Systems (MOEMS), Microwave photonics, Optical Sensors.