增强和增韧聚乙烯醇的有机-无机网络的仿生构建,提高了聚乙烯醇的紫外线屏蔽和热性能

IF 7.7 2区 材料科学 Q1 MATERIALS SCIENCE, COMPOSITES
Bangchao Zhong , Sha Yao , Jiaojiao Jiang , Qiaoyu He , Jianlin Li
{"title":"增强和增韧聚乙烯醇的有机-无机网络的仿生构建,提高了聚乙烯醇的紫外线屏蔽和热性能","authors":"Bangchao Zhong ,&nbsp;Sha Yao ,&nbsp;Jiaojiao Jiang ,&nbsp;Qiaoyu He ,&nbsp;Jianlin Li","doi":"10.1016/j.coco.2025.102549","DOIUrl":null,"url":null,"abstract":"<div><div>The preparation of biodegradable advanced polymer composite materials with combination of strength and toughness remains a significant challenge. In this work, inspired by the smart structure of spider silk, a biodegradable advanced poly(vinyl alcohol) (PVA) nanocomposite was designed via a biomimetic strategy using tannic acid (TA) grafted silica (SiO<sub>2</sub>) as a nanofiller-supported crosslinker (SiO<sub>2</sub>-s-TAS). The prepared PVA/SiO<sub>2</sub>-s-TAS nanocomposite exhibited simultaneously improved tensile strength and breaking strain, along with an increase in tensile toughness from 58.6 to 74.2 MJ/m<sup>3</sup> compared to the PVA/SiO<sub>2</sub> composite. The integration of high strength and good toughness in the PVA/SiO<sub>2</sub>-s-TAS nanocomposite was attributed to the nano-confinement effect around the SiO<sub>2</sub>-s-TAS nanoparticles and organic-inorganic dynamic network constructed by the PVA chains and SiO<sub>2</sub>-s-TAS via hydrogen bonds. Furthermore, the PVA/SiO<sub>2</sub>-s-TAS nanocomposite showed improved thermal stability, aging resistance and ultraviolet shielding performance. Therefore, this work offers a promising strategy for the preparation of advanced PVA composites, showing significant potential in biomedical engineering and advanced packaging fields.</div></div>","PeriodicalId":10533,"journal":{"name":"Composites Communications","volume":"58 ","pages":"Article 102549"},"PeriodicalIF":7.7000,"publicationDate":"2025-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bioinspired construction of organic-inorganic network for strengthening and toughening Poly(vinyl alcohol) with improved UV shielding and thermal performances\",\"authors\":\"Bangchao Zhong ,&nbsp;Sha Yao ,&nbsp;Jiaojiao Jiang ,&nbsp;Qiaoyu He ,&nbsp;Jianlin Li\",\"doi\":\"10.1016/j.coco.2025.102549\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The preparation of biodegradable advanced polymer composite materials with combination of strength and toughness remains a significant challenge. In this work, inspired by the smart structure of spider silk, a biodegradable advanced poly(vinyl alcohol) (PVA) nanocomposite was designed via a biomimetic strategy using tannic acid (TA) grafted silica (SiO<sub>2</sub>) as a nanofiller-supported crosslinker (SiO<sub>2</sub>-s-TAS). The prepared PVA/SiO<sub>2</sub>-s-TAS nanocomposite exhibited simultaneously improved tensile strength and breaking strain, along with an increase in tensile toughness from 58.6 to 74.2 MJ/m<sup>3</sup> compared to the PVA/SiO<sub>2</sub> composite. The integration of high strength and good toughness in the PVA/SiO<sub>2</sub>-s-TAS nanocomposite was attributed to the nano-confinement effect around the SiO<sub>2</sub>-s-TAS nanoparticles and organic-inorganic dynamic network constructed by the PVA chains and SiO<sub>2</sub>-s-TAS via hydrogen bonds. Furthermore, the PVA/SiO<sub>2</sub>-s-TAS nanocomposite showed improved thermal stability, aging resistance and ultraviolet shielding performance. Therefore, this work offers a promising strategy for the preparation of advanced PVA composites, showing significant potential in biomedical engineering and advanced packaging fields.</div></div>\",\"PeriodicalId\":10533,\"journal\":{\"name\":\"Composites Communications\",\"volume\":\"58 \",\"pages\":\"Article 102549\"},\"PeriodicalIF\":7.7000,\"publicationDate\":\"2025-07-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Composites Communications\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S245221392500302X\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, COMPOSITES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Composites Communications","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S245221392500302X","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 0

摘要

制备具有高强度和韧性的可生物降解高级高分子复合材料仍然是一个重大挑战。在这项工作中,受蜘蛛丝的智能结构的启发,通过仿生策略设计了一种可生物降解的高级聚乙烯醇(PVA)纳米复合材料,该复合材料采用单宁酸(TA)接枝二氧化硅(SiO2)作为纳米填充剂支撑的交联剂(SiO2-s- tas)。与PVA/SiO2复合材料相比,制备的PVA/SiO2-s- tas纳米复合材料的拉伸强度和断裂应变同时提高,拉伸韧性从58.6 MJ/m3提高到74.2 MJ/m3。PVA/SiO2-s-TAS纳米复合材料具有较高的强度和韧性,这主要是由于SiO2-s-TAS纳米颗粒周围的纳米约束效应以及PVA链和SiO2-s-TAS通过氢键构建的有机-无机动态网络。此外,PVA/SiO2-s-TAS纳米复合材料具有较好的热稳定性、耐老化性能和紫外线屏蔽性能。因此,本研究为先进PVA复合材料的制备提供了一种有前景的策略,在生物医学工程和先进包装领域显示出巨大的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bioinspired construction of organic-inorganic network for strengthening and toughening Poly(vinyl alcohol) with improved UV shielding and thermal performances
The preparation of biodegradable advanced polymer composite materials with combination of strength and toughness remains a significant challenge. In this work, inspired by the smart structure of spider silk, a biodegradable advanced poly(vinyl alcohol) (PVA) nanocomposite was designed via a biomimetic strategy using tannic acid (TA) grafted silica (SiO2) as a nanofiller-supported crosslinker (SiO2-s-TAS). The prepared PVA/SiO2-s-TAS nanocomposite exhibited simultaneously improved tensile strength and breaking strain, along with an increase in tensile toughness from 58.6 to 74.2 MJ/m3 compared to the PVA/SiO2 composite. The integration of high strength and good toughness in the PVA/SiO2-s-TAS nanocomposite was attributed to the nano-confinement effect around the SiO2-s-TAS nanoparticles and organic-inorganic dynamic network constructed by the PVA chains and SiO2-s-TAS via hydrogen bonds. Furthermore, the PVA/SiO2-s-TAS nanocomposite showed improved thermal stability, aging resistance and ultraviolet shielding performance. Therefore, this work offers a promising strategy for the preparation of advanced PVA composites, showing significant potential in biomedical engineering and advanced packaging fields.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Composites Communications
Composites Communications Materials Science-Ceramics and Composites
CiteScore
12.10
自引率
10.00%
发文量
340
审稿时长
36 days
期刊介绍: Composites Communications (Compos. Commun.) is a peer-reviewed journal publishing short communications and letters on the latest advances in composites science and technology. With a rapid review and publication process, its goal is to disseminate new knowledge promptly within the composites community. The journal welcomes manuscripts presenting creative concepts and new findings in design, state-of-the-art approaches in processing, synthesis, characterization, and mechanics modeling. In addition to traditional fiber-/particulate-reinforced engineering composites, it encourages submissions on composites with exceptional physical, mechanical, and fracture properties, as well as those with unique functions and significant application potential. This includes biomimetic and bio-inspired composites for biomedical applications, functional nano-composites for thermal management and energy applications, and composites designed for extreme service environments.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信