细菌混凝土中二氧化碳诱导自愈的多物理场有限元框架

IF 4.8 2区 工程技术 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Ajitanshu Vedrtnam , Kishor Kalauni , MT Palou
{"title":"细菌混凝土中二氧化碳诱导自愈的多物理场有限元框架","authors":"Ajitanshu Vedrtnam ,&nbsp;Kishor Kalauni ,&nbsp;MT Palou","doi":"10.1016/j.compstruc.2025.107908","DOIUrl":null,"url":null,"abstract":"<div><div>This study presents a multiphysics finite element model to simulate CO<sub>2</sub>-induced self-healing in bacterial concrete, offering a sustainable approach to crack repair and carbon sequestration. Unlike previous models, the proposed framework integrates coupled processes, including CO<sub>2</sub> diffusion, bacterial metabolism, moisture transport, and calcium carbonate precipitation, within a unified reaction–diffusion system. Implemented in FEniCS, the model uses refined meshing to resolve gradients near cracks and applies validated boundary conditions based on experimental studies. Simulations show that under optimal conditions (RH ≥ 80 %, CO<sub>2</sub> ≥ 20 %), over 90 % crack closure is achieved within six weeks for microcracks (≤0.5 mm), while larger cracks exhibit slower healing due to diffusion limitations. The model also demonstrates strong agreement with experimental data for carbonation depth and CaCO<sub>3</sub> formation, achieving a coefficient of determination (R<sup>2</sup>) of 0.996. These results confirm the potential of bacterial concrete for self-repair and carbon sequestration in humid, CO<sub>2</sub>-rich environments. The model provides a robust tool for optimizing material design and curing conditions, paving the way for the development of low-maintenance, carbon-negative infrastructure.</div></div>","PeriodicalId":50626,"journal":{"name":"Computers & Structures","volume":"316 ","pages":"Article 107908"},"PeriodicalIF":4.8000,"publicationDate":"2025-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A multiphysics finite element framework for CO2-induced self-healing in bacterial concrete\",\"authors\":\"Ajitanshu Vedrtnam ,&nbsp;Kishor Kalauni ,&nbsp;MT Palou\",\"doi\":\"10.1016/j.compstruc.2025.107908\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study presents a multiphysics finite element model to simulate CO<sub>2</sub>-induced self-healing in bacterial concrete, offering a sustainable approach to crack repair and carbon sequestration. Unlike previous models, the proposed framework integrates coupled processes, including CO<sub>2</sub> diffusion, bacterial metabolism, moisture transport, and calcium carbonate precipitation, within a unified reaction–diffusion system. Implemented in FEniCS, the model uses refined meshing to resolve gradients near cracks and applies validated boundary conditions based on experimental studies. Simulations show that under optimal conditions (RH ≥ 80 %, CO<sub>2</sub> ≥ 20 %), over 90 % crack closure is achieved within six weeks for microcracks (≤0.5 mm), while larger cracks exhibit slower healing due to diffusion limitations. The model also demonstrates strong agreement with experimental data for carbonation depth and CaCO<sub>3</sub> formation, achieving a coefficient of determination (R<sup>2</sup>) of 0.996. These results confirm the potential of bacterial concrete for self-repair and carbon sequestration in humid, CO<sub>2</sub>-rich environments. The model provides a robust tool for optimizing material design and curing conditions, paving the way for the development of low-maintenance, carbon-negative infrastructure.</div></div>\",\"PeriodicalId\":50626,\"journal\":{\"name\":\"Computers & Structures\",\"volume\":\"316 \",\"pages\":\"Article 107908\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2025-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers & Structures\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0045794925002664\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Structures","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0045794925002664","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

本研究提出了一个多物理场有限元模型来模拟细菌混凝土中二氧化碳诱导的自愈,为裂缝修复和碳封存提供了一种可持续的方法。与之前的模型不同,该框架将二氧化碳扩散、细菌代谢、水分输送和碳酸钙沉淀等耦合过程整合在一个统一的反应扩散系统中。该模型在fenic中实现,使用精细网格划分来解决裂缝附近的梯度,并基于实验研究应用验证的边界条件。模拟结果表明,在最佳条件下(RH≥80%,CO2≥20%),微裂纹(≤0.5 mm)在6周内闭合90%以上,而较大的裂纹由于扩散限制而愈合较慢。该模型与碳酸化深度和CaCO3形成的实验数据吻合较好,决定系数(R2)为0.996。这些结果证实了细菌混凝土在潮湿、富含二氧化碳的环境中具有自我修复和固碳的潜力。该模型为优化材料设计和固化条件提供了一个强大的工具,为低维护、负碳基础设施的发展铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A multiphysics finite element framework for CO2-induced self-healing in bacterial concrete
This study presents a multiphysics finite element model to simulate CO2-induced self-healing in bacterial concrete, offering a sustainable approach to crack repair and carbon sequestration. Unlike previous models, the proposed framework integrates coupled processes, including CO2 diffusion, bacterial metabolism, moisture transport, and calcium carbonate precipitation, within a unified reaction–diffusion system. Implemented in FEniCS, the model uses refined meshing to resolve gradients near cracks and applies validated boundary conditions based on experimental studies. Simulations show that under optimal conditions (RH ≥ 80 %, CO2 ≥ 20 %), over 90 % crack closure is achieved within six weeks for microcracks (≤0.5 mm), while larger cracks exhibit slower healing due to diffusion limitations. The model also demonstrates strong agreement with experimental data for carbonation depth and CaCO3 formation, achieving a coefficient of determination (R2) of 0.996. These results confirm the potential of bacterial concrete for self-repair and carbon sequestration in humid, CO2-rich environments. The model provides a robust tool for optimizing material design and curing conditions, paving the way for the development of low-maintenance, carbon-negative infrastructure.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computers & Structures
Computers & Structures 工程技术-工程:土木
CiteScore
8.80
自引率
6.40%
发文量
122
审稿时长
33 days
期刊介绍: Computers & Structures publishes advances in the development and use of computational methods for the solution of problems in engineering and the sciences. The range of appropriate contributions is wide, and includes papers on establishing appropriate mathematical models and their numerical solution in all areas of mechanics. The journal also includes articles that present a substantial review of a field in the topics of the journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信