Yi Zhang , Yuxuan Wu , Yuanzhuo Xie, Guojing Liu, Shoufeng Wang
{"title":"骨肉瘤治疗中免疫微环境重建与免疫化疗的智能药物共给药平台","authors":"Yi Zhang , Yuxuan Wu , Yuanzhuo Xie, Guojing Liu, Shoufeng Wang","doi":"10.1016/j.ejps.2025.107218","DOIUrl":null,"url":null,"abstract":"<div><div>Immunotherapy has emerged as a new strategy for tumor suppression, but its effectiveness is restricted by the immunosuppressive tumor microenvironment (TME) in the context of osteosarcoma treatment. Therefore, a series of therapies focused on immune activation have been introduced as combination treatments with immunotherapy, especially chemotherapies with the ability to induce immunogenic cell death (ICD). In this study, we designed a nanosized platform (<sup>CC</sup>HANP<sub>DOX</sub>) to codeliver doxorubicin (DOX) and cisplatin (CDDP) to the tumor site for synergistic killing of malignant cells. Due to the ability of DOX to induce ICD, the immunogenicity of the TME was reconstructed <em>via</em> tumor-specific antigen exposure and dendritic cell maturation. Furthermore, <sup>CC</sup>HANP<sub>DOX</sub> treatment increased the sensitivity of tumors to anti-programmed cell death-1 (aPD-1). Our in vivo results demonstrated that the combination of <sup>CC</sup>HANP<sub>DOX</sub> and aPD-1 not only successfully depressed tumor growth but also inhibited tumor recurrence and lung metastasis. The enhanced anti-tumor effect can be attributed to the activated immune response and established immune memory. This combination may be a potential immunochemotherapy option for osteosarcoma.</div></div>","PeriodicalId":12018,"journal":{"name":"European Journal of Pharmaceutical Sciences","volume":"212 ","pages":"Article 107218"},"PeriodicalIF":4.7000,"publicationDate":"2025-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Intelligent drug codelivery platform for immune microenvironment reconstruction and immunochemotherapy in osteosarcoma treatment\",\"authors\":\"Yi Zhang , Yuxuan Wu , Yuanzhuo Xie, Guojing Liu, Shoufeng Wang\",\"doi\":\"10.1016/j.ejps.2025.107218\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Immunotherapy has emerged as a new strategy for tumor suppression, but its effectiveness is restricted by the immunosuppressive tumor microenvironment (TME) in the context of osteosarcoma treatment. Therefore, a series of therapies focused on immune activation have been introduced as combination treatments with immunotherapy, especially chemotherapies with the ability to induce immunogenic cell death (ICD). In this study, we designed a nanosized platform (<sup>CC</sup>HANP<sub>DOX</sub>) to codeliver doxorubicin (DOX) and cisplatin (CDDP) to the tumor site for synergistic killing of malignant cells. Due to the ability of DOX to induce ICD, the immunogenicity of the TME was reconstructed <em>via</em> tumor-specific antigen exposure and dendritic cell maturation. Furthermore, <sup>CC</sup>HANP<sub>DOX</sub> treatment increased the sensitivity of tumors to anti-programmed cell death-1 (aPD-1). Our in vivo results demonstrated that the combination of <sup>CC</sup>HANP<sub>DOX</sub> and aPD-1 not only successfully depressed tumor growth but also inhibited tumor recurrence and lung metastasis. The enhanced anti-tumor effect can be attributed to the activated immune response and established immune memory. This combination may be a potential immunochemotherapy option for osteosarcoma.</div></div>\",\"PeriodicalId\":12018,\"journal\":{\"name\":\"European Journal of Pharmaceutical Sciences\",\"volume\":\"212 \",\"pages\":\"Article 107218\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2025-07-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Pharmaceutical Sciences\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0928098725002179\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Pharmaceutical Sciences","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0928098725002179","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
Intelligent drug codelivery platform for immune microenvironment reconstruction and immunochemotherapy in osteosarcoma treatment
Immunotherapy has emerged as a new strategy for tumor suppression, but its effectiveness is restricted by the immunosuppressive tumor microenvironment (TME) in the context of osteosarcoma treatment. Therefore, a series of therapies focused on immune activation have been introduced as combination treatments with immunotherapy, especially chemotherapies with the ability to induce immunogenic cell death (ICD). In this study, we designed a nanosized platform (CCHANPDOX) to codeliver doxorubicin (DOX) and cisplatin (CDDP) to the tumor site for synergistic killing of malignant cells. Due to the ability of DOX to induce ICD, the immunogenicity of the TME was reconstructed via tumor-specific antigen exposure and dendritic cell maturation. Furthermore, CCHANPDOX treatment increased the sensitivity of tumors to anti-programmed cell death-1 (aPD-1). Our in vivo results demonstrated that the combination of CCHANPDOX and aPD-1 not only successfully depressed tumor growth but also inhibited tumor recurrence and lung metastasis. The enhanced anti-tumor effect can be attributed to the activated immune response and established immune memory. This combination may be a potential immunochemotherapy option for osteosarcoma.
期刊介绍:
The journal publishes research articles, review articles and scientific commentaries on all aspects of the pharmaceutical sciences with emphasis on conceptual novelty and scientific quality. The Editors welcome articles in this multidisciplinary field, with a focus on topics relevant for drug discovery and development.
More specifically, the Journal publishes reports on medicinal chemistry, pharmacology, drug absorption and metabolism, pharmacokinetics and pharmacodynamics, pharmaceutical and biomedical analysis, drug delivery (including gene delivery), drug targeting, pharmaceutical technology, pharmaceutical biotechnology and clinical drug evaluation. The journal will typically not give priority to manuscripts focusing primarily on organic synthesis, natural products, adaptation of analytical approaches, or discussions pertaining to drug policy making.
Scientific commentaries and review articles are generally by invitation only or by consent of the Editors. Proceedings of scientific meetings may be published as special issues or supplements to the Journal.