Xia Lin , Chunhui Deng , Yue Shu , Shengshuai Li , Yunlong Song , Hong Kong , Ziwei Liang , Lei Liu , Yu Rao
{"title":"菌菌体在发酵蔬菜中的生态存在及其功能作用","authors":"Xia Lin , Chunhui Deng , Yue Shu , Shengshuai Li , Yunlong Song , Hong Kong , Ziwei Liang , Lei Liu , Yu Rao","doi":"10.1016/j.fm.2025.104884","DOIUrl":null,"url":null,"abstract":"<div><div>Fermented vegetables are widely favored by consumers for their distinctive flavors and nutritional value, with their quality attributes being closely associated with microbiome dynamics. Recent advances in high-throughput sequencing technologies have revealed abundant bacteriophage resources within the fermented vegetable microbiome. These viral components significantly influence fermentation processes and product characteristics by modulating microbial community structure and function. However, research on optimizing vegetable fermentation processes through bacteriophage-mediated regulation remains in its nascent stage. This study systematically summarizes the compositional characteristics and dynamic patterns of microbial communities in fermented vegetables. We review the latest research progress on bacteriophage diversity and functional properties in fermented vegetables. Furthermore, by integrating multi-omics data, we provide insights into the complex interaction network among bacteriophages, host microbiota, and metabolic products. The results demonstrate that bacteriophages precisely regulate the fermentation process by mediating microbial community succession via lytic-lysogenic cycles and participating in the biosynthesis of key flavor compounds through encoded auxiliary metabolic genes. Finally, we sort out an integrated technical framework combining metagenomics and culturomics. This research provides novel insights into understanding the functional mechanisms of bacteriophages in fermented vegetables, offers a theoretical foundation for developing precision fermentation technologies based on bacteriophage regulation.</div></div>","PeriodicalId":12399,"journal":{"name":"Food microbiology","volume":"133 ","pages":"Article 104884"},"PeriodicalIF":4.6000,"publicationDate":"2025-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ecological presence and functional role of bacteriophages in fermented vegetables\",\"authors\":\"Xia Lin , Chunhui Deng , Yue Shu , Shengshuai Li , Yunlong Song , Hong Kong , Ziwei Liang , Lei Liu , Yu Rao\",\"doi\":\"10.1016/j.fm.2025.104884\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Fermented vegetables are widely favored by consumers for their distinctive flavors and nutritional value, with their quality attributes being closely associated with microbiome dynamics. Recent advances in high-throughput sequencing technologies have revealed abundant bacteriophage resources within the fermented vegetable microbiome. These viral components significantly influence fermentation processes and product characteristics by modulating microbial community structure and function. However, research on optimizing vegetable fermentation processes through bacteriophage-mediated regulation remains in its nascent stage. This study systematically summarizes the compositional characteristics and dynamic patterns of microbial communities in fermented vegetables. We review the latest research progress on bacteriophage diversity and functional properties in fermented vegetables. Furthermore, by integrating multi-omics data, we provide insights into the complex interaction network among bacteriophages, host microbiota, and metabolic products. The results demonstrate that bacteriophages precisely regulate the fermentation process by mediating microbial community succession via lytic-lysogenic cycles and participating in the biosynthesis of key flavor compounds through encoded auxiliary metabolic genes. Finally, we sort out an integrated technical framework combining metagenomics and culturomics. This research provides novel insights into understanding the functional mechanisms of bacteriophages in fermented vegetables, offers a theoretical foundation for developing precision fermentation technologies based on bacteriophage regulation.</div></div>\",\"PeriodicalId\":12399,\"journal\":{\"name\":\"Food microbiology\",\"volume\":\"133 \",\"pages\":\"Article 104884\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-07-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Food microbiology\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0740002025001649\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food microbiology","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0740002025001649","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Ecological presence and functional role of bacteriophages in fermented vegetables
Fermented vegetables are widely favored by consumers for their distinctive flavors and nutritional value, with their quality attributes being closely associated with microbiome dynamics. Recent advances in high-throughput sequencing technologies have revealed abundant bacteriophage resources within the fermented vegetable microbiome. These viral components significantly influence fermentation processes and product characteristics by modulating microbial community structure and function. However, research on optimizing vegetable fermentation processes through bacteriophage-mediated regulation remains in its nascent stage. This study systematically summarizes the compositional characteristics and dynamic patterns of microbial communities in fermented vegetables. We review the latest research progress on bacteriophage diversity and functional properties in fermented vegetables. Furthermore, by integrating multi-omics data, we provide insights into the complex interaction network among bacteriophages, host microbiota, and metabolic products. The results demonstrate that bacteriophages precisely regulate the fermentation process by mediating microbial community succession via lytic-lysogenic cycles and participating in the biosynthesis of key flavor compounds through encoded auxiliary metabolic genes. Finally, we sort out an integrated technical framework combining metagenomics and culturomics. This research provides novel insights into understanding the functional mechanisms of bacteriophages in fermented vegetables, offers a theoretical foundation for developing precision fermentation technologies based on bacteriophage regulation.
期刊介绍:
Food Microbiology publishes original research articles, short communications, review papers, letters, news items and book reviews dealing with all aspects of the microbiology of foods. The editors aim to publish manuscripts of the highest quality which are both relevant and applicable to the broad field covered by the journal. Studies must be novel, have a clear connection to food microbiology, and be of general interest to the international community of food microbiologists. The editors make every effort to ensure rapid and fair reviews, resulting in timely publication of accepted manuscripts.