M.G. Walerowski , A.E. Oakley , M. Carravetta , R. Raja , L.M. Armstrong , M.E. Potter
{"title":"利用红外光谱研究掺杂硅的磷酸铝SAPO-5、SAPO-11、SAPO-18和SAPO-34中骨架选择对酸催化二甲醚形成的重要性","authors":"M.G. Walerowski , A.E. Oakley , M. Carravetta , R. Raja , L.M. Armstrong , M.E. Potter","doi":"10.1016/j.micromeso.2025.113783","DOIUrl":null,"url":null,"abstract":"<div><div>Methanol dehydration chemistry is heavily reliant on solid acid catalysts for the formation of a wide range of hydrocarbons. Whilst olefins are routinely formed on strong Brønsted acid sites, there is a growing interest in dimethyl ether production, due to its potential as a sustainable fuel alternative, which is compatible with current petroleum infrastructure. The effective formation of dimethyl ether over extended time periods typically favours weaker acid sites. Here, two methanol molecules can couple together, reducing the formation of larger aromatic products that facilitate the methanol-to-olefin process, but which can also facilitate catalyst deactivation. In this manuscript, we use <em>operando</em> diffuse reflectance infrared Fourier transform spectroscopy to probe methanol dehydration on a range of microporous silicon-doped aluminophosphates (SAPO-5, SAPO-11, SAPO-18, and SAPO-34), correlating the findings with catalytic data to highlight the key parameters for an effective methanol-to-dimethyl ether catalyst. In doing so, we demonstrate that weaker acid sites play a key role in the production of dimethyl ether by permitting bound methoxy species and unbound methanol molecules to co-exist, triggering dimethyl ether formation.</div></div>","PeriodicalId":392,"journal":{"name":"Microporous and Mesoporous Materials","volume":"397 ","pages":"Article 113783"},"PeriodicalIF":4.7000,"publicationDate":"2025-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Operando infrared spectroscopy to probe the importance of framework selection in silicon-doped aluminophosphates, SAPO-5, SAPO-11, SAPO-18, and SAPO-34, for acid catalysed dimethyl ether formation\",\"authors\":\"M.G. Walerowski , A.E. Oakley , M. Carravetta , R. Raja , L.M. Armstrong , M.E. Potter\",\"doi\":\"10.1016/j.micromeso.2025.113783\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Methanol dehydration chemistry is heavily reliant on solid acid catalysts for the formation of a wide range of hydrocarbons. Whilst olefins are routinely formed on strong Brønsted acid sites, there is a growing interest in dimethyl ether production, due to its potential as a sustainable fuel alternative, which is compatible with current petroleum infrastructure. The effective formation of dimethyl ether over extended time periods typically favours weaker acid sites. Here, two methanol molecules can couple together, reducing the formation of larger aromatic products that facilitate the methanol-to-olefin process, but which can also facilitate catalyst deactivation. In this manuscript, we use <em>operando</em> diffuse reflectance infrared Fourier transform spectroscopy to probe methanol dehydration on a range of microporous silicon-doped aluminophosphates (SAPO-5, SAPO-11, SAPO-18, and SAPO-34), correlating the findings with catalytic data to highlight the key parameters for an effective methanol-to-dimethyl ether catalyst. In doing so, we demonstrate that weaker acid sites play a key role in the production of dimethyl ether by permitting bound methoxy species and unbound methanol molecules to co-exist, triggering dimethyl ether formation.</div></div>\",\"PeriodicalId\":392,\"journal\":{\"name\":\"Microporous and Mesoporous Materials\",\"volume\":\"397 \",\"pages\":\"Article 113783\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2025-07-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microporous and Mesoporous Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1387181125002987\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microporous and Mesoporous Materials","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1387181125002987","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
Operando infrared spectroscopy to probe the importance of framework selection in silicon-doped aluminophosphates, SAPO-5, SAPO-11, SAPO-18, and SAPO-34, for acid catalysed dimethyl ether formation
Methanol dehydration chemistry is heavily reliant on solid acid catalysts for the formation of a wide range of hydrocarbons. Whilst olefins are routinely formed on strong Brønsted acid sites, there is a growing interest in dimethyl ether production, due to its potential as a sustainable fuel alternative, which is compatible with current petroleum infrastructure. The effective formation of dimethyl ether over extended time periods typically favours weaker acid sites. Here, two methanol molecules can couple together, reducing the formation of larger aromatic products that facilitate the methanol-to-olefin process, but which can also facilitate catalyst deactivation. In this manuscript, we use operando diffuse reflectance infrared Fourier transform spectroscopy to probe methanol dehydration on a range of microporous silicon-doped aluminophosphates (SAPO-5, SAPO-11, SAPO-18, and SAPO-34), correlating the findings with catalytic data to highlight the key parameters for an effective methanol-to-dimethyl ether catalyst. In doing so, we demonstrate that weaker acid sites play a key role in the production of dimethyl ether by permitting bound methoxy species and unbound methanol molecules to co-exist, triggering dimethyl ether formation.
期刊介绍:
Microporous and Mesoporous Materials covers novel and significant aspects of porous solids classified as either microporous (pore size up to 2 nm) or mesoporous (pore size 2 to 50 nm). The porosity should have a specific impact on the material properties or application. Typical examples are zeolites and zeolite-like materials, pillared materials, clathrasils and clathrates, carbon molecular sieves, ordered mesoporous materials, organic/inorganic porous hybrid materials, or porous metal oxides. Both natural and synthetic porous materials are within the scope of the journal.
Topics which are particularly of interest include:
All aspects of natural microporous and mesoporous solids
The synthesis of crystalline or amorphous porous materials
The physico-chemical characterization of microporous and mesoporous solids, especially spectroscopic and microscopic
The modification of microporous and mesoporous solids, for example by ion exchange or solid-state reactions
All topics related to diffusion of mobile species in the pores of microporous and mesoporous materials
Adsorption (and other separation techniques) using microporous or mesoporous adsorbents
Catalysis by microporous and mesoporous materials
Host/guest interactions
Theoretical chemistry and modelling of host/guest interactions
All topics related to the application of microporous and mesoporous materials in industrial catalysis, separation technology, environmental protection, electrochemistry, membranes, sensors, optical devices, etc.