MWCNT-CuO/ZnO纳米复合垂直TFET的VOC传感性能增强

IF 3 Q2 PHYSICS, CONDENSED MATTER
Abdulrahman Saad Alqahtani , Hashim Elshafie , Azath Mubarakali , M. Suresh Chinnathampy , A. Alavudeen Basha , P. Parthasarathy , M. Venkatesh
{"title":"MWCNT-CuO/ZnO纳米复合垂直TFET的VOC传感性能增强","authors":"Abdulrahman Saad Alqahtani ,&nbsp;Hashim Elshafie ,&nbsp;Azath Mubarakali ,&nbsp;M. Suresh Chinnathampy ,&nbsp;A. Alavudeen Basha ,&nbsp;P. Parthasarathy ,&nbsp;M. Venkatesh","doi":"10.1016/j.micrna.2025.208281","DOIUrl":null,"url":null,"abstract":"<div><div>This study proposes a high-performance vertical tunnel field-effect transistor (VTFET)-based gas sensor incorporating a nanocomposite channel of multi-walled carbon nanotubes (MWCNTs) combined with CuO/ZnO bilayers. The design leverages the enhanced surface area, superior carrier transport, and strong gate coupling enabled by the vertical configuration to significantly improve gas detection sensitivity. The sensing mechanism is based on modulation of the drain current due to variations in the gate metal's work function upon exposure to volatile organic compounds (VOCs). These changes alter the surface potential and tunneling barrier, producing detectable shifts in the electrical characteristics without relying solely on threshold voltage modulation. Among the analytes examined, ethanol exhibited the highest sensitivity, with a 2.61 % increase in ON-current for a gate work function shift from 45 meV to 200 meV, followed by methanol (2.32 %) and acetone (2.12 %). The sensor achieves a steep subthreshold swing and an exceptionally high I<sub>ON</sub>/I<sub>OFF</sub> ratio of ∼10<sup>12</sup>, indicating excellent switching behaviour and ultra-low leakage. It operates with a maximum threshold voltage of 0.8 V for ethanol detection and maintains low power consumption due to its efficient band-to-band tunneling process. The use of CMOS-compatible materials such as HfO<sub>2</sub>, CuO, ZnO, and MWCNTs supports scalable fabrication and cost efficiency. These features make the proposed sensor a strong candidate for real-time VOC detection in various domains, including environmental monitoring, industrial safety, biomedical diagnostics, and automotive applications.</div></div>","PeriodicalId":100923,"journal":{"name":"Micro and Nanostructures","volume":"207 ","pages":"Article 208281"},"PeriodicalIF":3.0000,"publicationDate":"2025-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhanced VOC sensing performance of MWCNT-CuO/ZnO nanocomposite based vertical TFET\",\"authors\":\"Abdulrahman Saad Alqahtani ,&nbsp;Hashim Elshafie ,&nbsp;Azath Mubarakali ,&nbsp;M. Suresh Chinnathampy ,&nbsp;A. Alavudeen Basha ,&nbsp;P. Parthasarathy ,&nbsp;M. Venkatesh\",\"doi\":\"10.1016/j.micrna.2025.208281\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study proposes a high-performance vertical tunnel field-effect transistor (VTFET)-based gas sensor incorporating a nanocomposite channel of multi-walled carbon nanotubes (MWCNTs) combined with CuO/ZnO bilayers. The design leverages the enhanced surface area, superior carrier transport, and strong gate coupling enabled by the vertical configuration to significantly improve gas detection sensitivity. The sensing mechanism is based on modulation of the drain current due to variations in the gate metal's work function upon exposure to volatile organic compounds (VOCs). These changes alter the surface potential and tunneling barrier, producing detectable shifts in the electrical characteristics without relying solely on threshold voltage modulation. Among the analytes examined, ethanol exhibited the highest sensitivity, with a 2.61 % increase in ON-current for a gate work function shift from 45 meV to 200 meV, followed by methanol (2.32 %) and acetone (2.12 %). The sensor achieves a steep subthreshold swing and an exceptionally high I<sub>ON</sub>/I<sub>OFF</sub> ratio of ∼10<sup>12</sup>, indicating excellent switching behaviour and ultra-low leakage. It operates with a maximum threshold voltage of 0.8 V for ethanol detection and maintains low power consumption due to its efficient band-to-band tunneling process. The use of CMOS-compatible materials such as HfO<sub>2</sub>, CuO, ZnO, and MWCNTs supports scalable fabrication and cost efficiency. These features make the proposed sensor a strong candidate for real-time VOC detection in various domains, including environmental monitoring, industrial safety, biomedical diagnostics, and automotive applications.</div></div>\",\"PeriodicalId\":100923,\"journal\":{\"name\":\"Micro and Nanostructures\",\"volume\":\"207 \",\"pages\":\"Article 208281\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-07-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Micro and Nanostructures\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2773012325002109\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, CONDENSED MATTER\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Micro and Nanostructures","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2773012325002109","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0

摘要

本研究提出了一种基于垂直隧道场效应晶体管(VTFET)的高性能气体传感器,该传感器结合了多壁碳纳米管(MWCNTs)与CuO/ZnO双分子层的纳米复合通道。该设计利用了增强的表面积、优越的载流子传输和强栅极耦合,通过垂直配置显着提高了气体检测灵敏度。该传感机制是基于栅极金属在暴露于挥发性有机化合物(VOCs)时的功函数变化所引起的漏极电流调制。这些变化改变了表面电位和隧道势垒,产生了可检测的电特性变化,而不依赖于阈值电压调制。在所检测的分析物中,乙醇表现出最高的灵敏度,当栅极功函数从45 meV转换到200 meV时,其导通电流增加2.61%,其次是甲醇(2.32%)和丙酮(2.12%)。该传感器实现陡峭的亚阈值摆动和异常高的离子/IOFF比(~ 1012),表明出色的开关性能和超低泄漏。它的最大阈值电压为0.8 V,用于乙醇检测,并且由于其高效的带对带隧道过程而保持低功耗。使用与cmos兼容的材料,如HfO2、CuO、ZnO和MWCNTs,支持可扩展的制造和成本效率。这些特性使该传感器成为各种领域实时VOC检测的有力候选者,包括环境监测、工业安全、生物医学诊断和汽车应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Enhanced VOC sensing performance of MWCNT-CuO/ZnO nanocomposite based vertical TFET
This study proposes a high-performance vertical tunnel field-effect transistor (VTFET)-based gas sensor incorporating a nanocomposite channel of multi-walled carbon nanotubes (MWCNTs) combined with CuO/ZnO bilayers. The design leverages the enhanced surface area, superior carrier transport, and strong gate coupling enabled by the vertical configuration to significantly improve gas detection sensitivity. The sensing mechanism is based on modulation of the drain current due to variations in the gate metal's work function upon exposure to volatile organic compounds (VOCs). These changes alter the surface potential and tunneling barrier, producing detectable shifts in the electrical characteristics without relying solely on threshold voltage modulation. Among the analytes examined, ethanol exhibited the highest sensitivity, with a 2.61 % increase in ON-current for a gate work function shift from 45 meV to 200 meV, followed by methanol (2.32 %) and acetone (2.12 %). The sensor achieves a steep subthreshold swing and an exceptionally high ION/IOFF ratio of ∼1012, indicating excellent switching behaviour and ultra-low leakage. It operates with a maximum threshold voltage of 0.8 V for ethanol detection and maintains low power consumption due to its efficient band-to-band tunneling process. The use of CMOS-compatible materials such as HfO2, CuO, ZnO, and MWCNTs supports scalable fabrication and cost efficiency. These features make the proposed sensor a strong candidate for real-time VOC detection in various domains, including environmental monitoring, industrial safety, biomedical diagnostics, and automotive applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.50
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信