基于硅基晶圆级封装工艺的虹膜稳定基板集成波导带通滤波器设计

IF 1.9 3区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Jie Liu , Yi Le , Jun Liu , Guodong Su , Zengda Wang , Yuehang Xu
{"title":"基于硅基晶圆级封装工艺的虹膜稳定基板集成波导带通滤波器设计","authors":"Jie Liu ,&nbsp;Yi Le ,&nbsp;Jun Liu ,&nbsp;Guodong Su ,&nbsp;Zengda Wang ,&nbsp;Yuehang Xu","doi":"10.1016/j.mejo.2025.106808","DOIUrl":null,"url":null,"abstract":"<div><div>This article presents an irises-stabilized substrate integrated waveguide (IS-SIW) structure for bandpass filter (BPF) designs in the wafer-level packaging (WLP) process. The IS-SIW employs irises to reinforce the SIW cavity. They can effectively protect physical structure of SIW from wafer warpage, which is caused by thermal expansion. By introducing advanced coplanar waveguide (CPW) wave mode converters and H-slotted resonators, the IS-SIW can generate a passband with two transmission poles (TPs) and two transmission zeros (TZs). Additionally, the feedlines are designed with stepped-impedance resonators (SIRs) and defected ground structures (DGSs) ensure interconnection and impedance matching between the IS-SIW and the ground-signal-ground (GSG) ports. Finally, three IS-SIW BPF prototypes were designed and fabricated. Measurement results align well with the theoretical analysis and simulation results. These BPFs achieve miniaturization and at least 30 dB out-of-band suppression. Therefore, the proposed IS-SIW BPFs show great potential for applications in millimeter-wave short-range radar and communication systems.</div></div>","PeriodicalId":49818,"journal":{"name":"Microelectronics Journal","volume":"165 ","pages":"Article 106808"},"PeriodicalIF":1.9000,"publicationDate":"2025-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design of irises-stabilized substrate integrated waveguide bandpass filters on silicon-based wafer-level packaging process\",\"authors\":\"Jie Liu ,&nbsp;Yi Le ,&nbsp;Jun Liu ,&nbsp;Guodong Su ,&nbsp;Zengda Wang ,&nbsp;Yuehang Xu\",\"doi\":\"10.1016/j.mejo.2025.106808\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This article presents an irises-stabilized substrate integrated waveguide (IS-SIW) structure for bandpass filter (BPF) designs in the wafer-level packaging (WLP) process. The IS-SIW employs irises to reinforce the SIW cavity. They can effectively protect physical structure of SIW from wafer warpage, which is caused by thermal expansion. By introducing advanced coplanar waveguide (CPW) wave mode converters and H-slotted resonators, the IS-SIW can generate a passband with two transmission poles (TPs) and two transmission zeros (TZs). Additionally, the feedlines are designed with stepped-impedance resonators (SIRs) and defected ground structures (DGSs) ensure interconnection and impedance matching between the IS-SIW and the ground-signal-ground (GSG) ports. Finally, three IS-SIW BPF prototypes were designed and fabricated. Measurement results align well with the theoretical analysis and simulation results. These BPFs achieve miniaturization and at least 30 dB out-of-band suppression. Therefore, the proposed IS-SIW BPFs show great potential for applications in millimeter-wave short-range radar and communication systems.</div></div>\",\"PeriodicalId\":49818,\"journal\":{\"name\":\"Microelectronics Journal\",\"volume\":\"165 \",\"pages\":\"Article 106808\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2025-07-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microelectronics Journal\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1879239125002577\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microelectronics Journal","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1879239125002577","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种用于晶圆级封装(WLP)工艺中带通滤波器(BPF)设计的虹膜稳定基板集成波导(IS-SIW)结构。IS-SIW采用虹膜来加固SIW腔体。它们可以有效地保护SIW的物理结构免受由热膨胀引起的晶圆翘曲。通过引入先进的共面波导(CPW)波模转换器和h槽谐振器,IS-SIW可以产生具有两个传输极点(tp)和两个传输零点(TZs)的通带。此外,馈线设计了阶进阻抗谐振器(SIRs)和缺陷接地结构(DGSs),确保了IS-SIW和接地信号-接地(GSG)端口之间的互连和阻抗匹配。最后,设计并制作了3个IS-SIW BPF原型。测量结果与理论分析和仿真结果吻合良好。这些bpf实现了小型化和至少30 dB的带外抑制。因此,所提出的IS-SIW bpf在毫米波短距离雷达和通信系统中显示出巨大的应用潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Design of irises-stabilized substrate integrated waveguide bandpass filters on silicon-based wafer-level packaging process
This article presents an irises-stabilized substrate integrated waveguide (IS-SIW) structure for bandpass filter (BPF) designs in the wafer-level packaging (WLP) process. The IS-SIW employs irises to reinforce the SIW cavity. They can effectively protect physical structure of SIW from wafer warpage, which is caused by thermal expansion. By introducing advanced coplanar waveguide (CPW) wave mode converters and H-slotted resonators, the IS-SIW can generate a passband with two transmission poles (TPs) and two transmission zeros (TZs). Additionally, the feedlines are designed with stepped-impedance resonators (SIRs) and defected ground structures (DGSs) ensure interconnection and impedance matching between the IS-SIW and the ground-signal-ground (GSG) ports. Finally, three IS-SIW BPF prototypes were designed and fabricated. Measurement results align well with the theoretical analysis and simulation results. These BPFs achieve miniaturization and at least 30 dB out-of-band suppression. Therefore, the proposed IS-SIW BPFs show great potential for applications in millimeter-wave short-range radar and communication systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Microelectronics Journal
Microelectronics Journal 工程技术-工程:电子与电气
CiteScore
4.00
自引率
27.30%
发文量
222
审稿时长
43 days
期刊介绍: Published since 1969, the Microelectronics Journal is an international forum for the dissemination of research and applications of microelectronic systems, circuits, and emerging technologies. Papers published in the Microelectronics Journal have undergone peer review to ensure originality, relevance, and timeliness. The journal thus provides a worldwide, regular, and comprehensive update on microelectronic circuits and systems. The Microelectronics Journal invites papers describing significant research and applications in all of the areas listed below. Comprehensive review/survey papers covering recent developments will also be considered. The Microelectronics Journal covers circuits and systems. This topic includes but is not limited to: Analog, digital, mixed, and RF circuits and related design methodologies; Logic, architectural, and system level synthesis; Testing, design for testability, built-in self-test; Area, power, and thermal analysis and design; Mixed-domain simulation and design; Embedded systems; Non-von Neumann computing and related technologies and circuits; Design and test of high complexity systems integration; SoC, NoC, SIP, and NIP design and test; 3-D integration design and analysis; Emerging device technologies and circuits, such as FinFETs, SETs, spintronics, SFQ, MTJ, etc. Application aspects such as signal and image processing including circuits for cryptography, sensors, and actuators including sensor networks, reliability and quality issues, and economic models are also welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信