水生环境中重金属的生物修复研究进展

Olubukola Oziegbe , Ehitua  Julius Oziegbe , Olusola Ojo-Omoniyi
{"title":"水生环境中重金属的生物修复研究进展","authors":"Olubukola Oziegbe ,&nbsp;Ehitua  Julius Oziegbe ,&nbsp;Olusola Ojo-Omoniyi","doi":"10.1016/j.clce.2025.100193","DOIUrl":null,"url":null,"abstract":"<div><div>The pursuit of critical minerals such as lithium (Li), nickel (Ni), cobalt (Co), and rare earth elements (REE) has intensified mining, producing heavy metal waste that contaminates water bodies. Pollution from human activities and improper disposal of high-tech products containing heavy metals like Hg, Cd, Ni, Cu, Pb, and Cr has degraded surface and groundwater. These metals enter the human body via bioaccumulation in the food chain or direct consumption of contaminated water, posing health risks. There is an urgent need for cost-effective, eco-friendly methods to decontaminate water without generating additional pollutants. Conventional remediation technologies are costly and produce hazardous waste requiring disposal. In contrast, biological materials—such as bacteria, cyanobacteria, fungi, lichens, algae, and plants—offer affordable, sustainable solutions for water decontamination. Moreover, metal-rich biomass from bioremediation processes, like cyanoremediation, can be converted into valuable products, such as metal nanoparticles for pharmaceutical and industrial use, creating a closed-loop system that generates wealth instead of waste. Genetic engineering can further enhance biosorbent organisms and plants to improve heavy metal binding and accumulation. This review examines the environmental and health impacts of heavy metals, the limitations of conventional remediation methods, various bioremediation techniques, and future research directions.</div></div>","PeriodicalId":100251,"journal":{"name":"Cleaner Chemical Engineering","volume":"11 ","pages":"Article 100193"},"PeriodicalIF":0.0000,"publicationDate":"2025-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bioremediation of heavy metals in aquatic environment: A review\",\"authors\":\"Olubukola Oziegbe ,&nbsp;Ehitua  Julius Oziegbe ,&nbsp;Olusola Ojo-Omoniyi\",\"doi\":\"10.1016/j.clce.2025.100193\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The pursuit of critical minerals such as lithium (Li), nickel (Ni), cobalt (Co), and rare earth elements (REE) has intensified mining, producing heavy metal waste that contaminates water bodies. Pollution from human activities and improper disposal of high-tech products containing heavy metals like Hg, Cd, Ni, Cu, Pb, and Cr has degraded surface and groundwater. These metals enter the human body via bioaccumulation in the food chain or direct consumption of contaminated water, posing health risks. There is an urgent need for cost-effective, eco-friendly methods to decontaminate water without generating additional pollutants. Conventional remediation technologies are costly and produce hazardous waste requiring disposal. In contrast, biological materials—such as bacteria, cyanobacteria, fungi, lichens, algae, and plants—offer affordable, sustainable solutions for water decontamination. Moreover, metal-rich biomass from bioremediation processes, like cyanoremediation, can be converted into valuable products, such as metal nanoparticles for pharmaceutical and industrial use, creating a closed-loop system that generates wealth instead of waste. Genetic engineering can further enhance biosorbent organisms and plants to improve heavy metal binding and accumulation. This review examines the environmental and health impacts of heavy metals, the limitations of conventional remediation methods, various bioremediation techniques, and future research directions.</div></div>\",\"PeriodicalId\":100251,\"journal\":{\"name\":\"Cleaner Chemical Engineering\",\"volume\":\"11 \",\"pages\":\"Article 100193\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-07-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cleaner Chemical Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2772782325000488\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cleaner Chemical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772782325000488","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

对锂(Li)、镍(Ni)、钴(Co)和稀土元素(REE)等关键矿物的追求加剧了采矿,产生了污染水体的重金属废物。人类活动造成的污染以及对含有汞、镉、镍、铜、铅和铬等重金属的高科技产品的不当处理导致地表水和地下水退化。这些金属通过食物链中的生物积累或直接饮用受污染的水进入人体,构成健康风险。迫切需要一种成本效益高、环境友好的方法来净化水,而不产生额外的污染物。传统的修复技术成本高昂,而且会产生需要处理的危险废物。相比之下,生物材料——如细菌、蓝藻、真菌、地衣、藻类和植物——为水净化提供了经济、可持续的解决方案。此外,来自生物修复过程(如氰修复)的富含金属的生物质可以转化为有价值的产品,如用于制药和工业用途的金属纳米粒子,从而形成一个产生财富而不是浪费的闭环系统。基因工程可以进一步增强生物吸附生物和植物,以改善重金属的结合和积累。本文综述了重金属对环境和健康的影响、传统修复方法的局限性、各种生物修复技术以及未来的研究方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bioremediation of heavy metals in aquatic environment: A review
The pursuit of critical minerals such as lithium (Li), nickel (Ni), cobalt (Co), and rare earth elements (REE) has intensified mining, producing heavy metal waste that contaminates water bodies. Pollution from human activities and improper disposal of high-tech products containing heavy metals like Hg, Cd, Ni, Cu, Pb, and Cr has degraded surface and groundwater. These metals enter the human body via bioaccumulation in the food chain or direct consumption of contaminated water, posing health risks. There is an urgent need for cost-effective, eco-friendly methods to decontaminate water without generating additional pollutants. Conventional remediation technologies are costly and produce hazardous waste requiring disposal. In contrast, biological materials—such as bacteria, cyanobacteria, fungi, lichens, algae, and plants—offer affordable, sustainable solutions for water decontamination. Moreover, metal-rich biomass from bioremediation processes, like cyanoremediation, can be converted into valuable products, such as metal nanoparticles for pharmaceutical and industrial use, creating a closed-loop system that generates wealth instead of waste. Genetic engineering can further enhance biosorbent organisms and plants to improve heavy metal binding and accumulation. This review examines the environmental and health impacts of heavy metals, the limitations of conventional remediation methods, various bioremediation techniques, and future research directions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信