一种新型菌群对氯地那福-丙炔的分子特性和土壤生物修复作用

IF 7.1 2区 环境科学与生态学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Mohamed A. Fahmy , Sally Attia , Maha M. Nader , Sarah I.Z. Abdel-Wahab , Muhammad Ayman , Layla A. Almutairi , Mohammed A. Alqahtani , Naheda M. Alshammari , Nada M. Abd El-Moaty , Mohamed Maher , Mahmoud Sitohy , Mohamed T. El-Saadony
{"title":"一种新型菌群对氯地那福-丙炔的分子特性和土壤生物修复作用","authors":"Mohamed A. Fahmy ,&nbsp;Sally Attia ,&nbsp;Maha M. Nader ,&nbsp;Sarah I.Z. Abdel-Wahab ,&nbsp;Muhammad Ayman ,&nbsp;Layla A. Almutairi ,&nbsp;Mohammed A. Alqahtani ,&nbsp;Naheda M. Alshammari ,&nbsp;Nada M. Abd El-Moaty ,&nbsp;Mohamed Maher ,&nbsp;Mahmoud Sitohy ,&nbsp;Mohamed T. El-Saadony","doi":"10.1016/j.eti.2025.104366","DOIUrl":null,"url":null,"abstract":"<div><div>Clodinafop-propargyl (CF) is a widely used herbicide with high persistence in soil, raising concerns about its long-term environmental impact. Bacterial biodegradation provides a sustainable and eco-friendly strategy to mitigate CF contamination. This study evaluated the in-situ bioremediation potential of a six-member bacterial consortium (T3) by measuring CO₂ evolution as an indicator of microbial activity and monitoring CF residues in two soil types using microcosm systems. The consortium included <em>Bacillus subtilis</em> subsp. <em>subtilis</em> AZFS3 (LC599401.1), <em>Bacillus pumilus</em> AZFS5 (LC599402.1), <em>Bacillus mojavensis</em> AZFS15 (LC599403.1), <em>Bacillus paramycoides</em> AZFS18 (LC599406.1), <em>Pseudomonas aeruginosa</em> KZFS4 (LC599404.1), and <em>Alcaligenes aquatilis</em> KZFS11 (LC599405.1). T3 performance was compared to two individual strains representing Gram-positive and Gram-negative bacteria: <em>B. subtilis</em> subsp. <em>subtilis</em> AZFS3 (T1) and <em>P. aeruginosa</em> KZFS4 (T2). T3 achieved the highest degradation efficiency among all treatments, with CO₂ emissions nearing zero by day 20 (0.120 mg CO₂/100 g/DW. soil, equivalent to 0.63 % CF residue in sandy loam). CF residues were significantly reduced to 0.34 % (0.16 mg/kg sandy loam soil) and 6.38 % (2.99 mg/kg clay soil), underscoring the consortium’s strong bioremediation capacity, as determined by HPLC. Metabolite profiling, gene expression analysis, and pathway prediction further supported the consortium’s superiority over individual strains. The enzymes required for CF degradation were distributed across all six bacterial strains. The molecular characterization of the CF degradation pathway, using integrated bioinformatic and experimental approaches, confirmed its collective encoding by the individual members of the bacterial hexa-consortium. The Maleylacetate reductase (EC 1.3.1.32), crucial for the complete CF breakdown, was found exclusively in <em>P. aeruginosa</em>, suggesting a potential enzymatic bottleneck and a limiting factor. Future research should focus on enriching the consortium with additional strains expressing this enzyme to provide other alternatives capable of enhancing the degradation efficiency. The six-strain consortium offers a practical and environmentally sound solution for remediating CF-contaminated soils.</div></div>","PeriodicalId":11725,"journal":{"name":"Environmental Technology & Innovation","volume":"40 ","pages":"Article 104366"},"PeriodicalIF":7.1000,"publicationDate":"2025-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Molecular characterization and soil bioremediation of Clodinafop-propargyl by a novel bacterial consortium\",\"authors\":\"Mohamed A. Fahmy ,&nbsp;Sally Attia ,&nbsp;Maha M. Nader ,&nbsp;Sarah I.Z. Abdel-Wahab ,&nbsp;Muhammad Ayman ,&nbsp;Layla A. Almutairi ,&nbsp;Mohammed A. Alqahtani ,&nbsp;Naheda M. Alshammari ,&nbsp;Nada M. Abd El-Moaty ,&nbsp;Mohamed Maher ,&nbsp;Mahmoud Sitohy ,&nbsp;Mohamed T. El-Saadony\",\"doi\":\"10.1016/j.eti.2025.104366\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Clodinafop-propargyl (CF) is a widely used herbicide with high persistence in soil, raising concerns about its long-term environmental impact. Bacterial biodegradation provides a sustainable and eco-friendly strategy to mitigate CF contamination. This study evaluated the in-situ bioremediation potential of a six-member bacterial consortium (T3) by measuring CO₂ evolution as an indicator of microbial activity and monitoring CF residues in two soil types using microcosm systems. The consortium included <em>Bacillus subtilis</em> subsp. <em>subtilis</em> AZFS3 (LC599401.1), <em>Bacillus pumilus</em> AZFS5 (LC599402.1), <em>Bacillus mojavensis</em> AZFS15 (LC599403.1), <em>Bacillus paramycoides</em> AZFS18 (LC599406.1), <em>Pseudomonas aeruginosa</em> KZFS4 (LC599404.1), and <em>Alcaligenes aquatilis</em> KZFS11 (LC599405.1). T3 performance was compared to two individual strains representing Gram-positive and Gram-negative bacteria: <em>B. subtilis</em> subsp. <em>subtilis</em> AZFS3 (T1) and <em>P. aeruginosa</em> KZFS4 (T2). T3 achieved the highest degradation efficiency among all treatments, with CO₂ emissions nearing zero by day 20 (0.120 mg CO₂/100 g/DW. soil, equivalent to 0.63 % CF residue in sandy loam). CF residues were significantly reduced to 0.34 % (0.16 mg/kg sandy loam soil) and 6.38 % (2.99 mg/kg clay soil), underscoring the consortium’s strong bioremediation capacity, as determined by HPLC. Metabolite profiling, gene expression analysis, and pathway prediction further supported the consortium’s superiority over individual strains. The enzymes required for CF degradation were distributed across all six bacterial strains. The molecular characterization of the CF degradation pathway, using integrated bioinformatic and experimental approaches, confirmed its collective encoding by the individual members of the bacterial hexa-consortium. The Maleylacetate reductase (EC 1.3.1.32), crucial for the complete CF breakdown, was found exclusively in <em>P. aeruginosa</em>, suggesting a potential enzymatic bottleneck and a limiting factor. Future research should focus on enriching the consortium with additional strains expressing this enzyme to provide other alternatives capable of enhancing the degradation efficiency. The six-strain consortium offers a practical and environmentally sound solution for remediating CF-contaminated soils.</div></div>\",\"PeriodicalId\":11725,\"journal\":{\"name\":\"Environmental Technology & Innovation\",\"volume\":\"40 \",\"pages\":\"Article 104366\"},\"PeriodicalIF\":7.1000,\"publicationDate\":\"2025-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Technology & Innovation\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2352186425003529\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Technology & Innovation","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352186425003529","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

氯硝福丙炔(Clodinafop-propargyl, CF)是一种广泛使用的土壤持久性除草剂,其对环境的长期影响引起了人们的关注。细菌生物降解为减轻CF污染提供了一种可持续和生态友好的策略。本研究通过测量CO₂进化(微生物活性指标)和监测两种土壤类型中CF残留,评估了6个成员细菌联盟(T3)的原位生物修复潜力。该联合体包括枯草芽孢杆菌。枯草芽孢杆菌AZFS3 (LC599401.1)、杆状芽孢杆菌AZFS5 (LC599402.1)、莫氏芽孢杆菌AZFS15 (LC599403.1)、副芽孢杆菌AZFS18 (LC599406.1)、铜绿假单胞菌KZFS4 (LC599404.1)、水生芽孢杆菌KZFS11 (LC599405.1)。比较了革兰氏阳性菌和革兰氏阴性菌枯草芽孢杆菌两个菌株的T3性能。枯草杆菌AZFS3 (T1)和铜绿假单胞菌KZFS4 (T2)。在所有处理中,T3的降解效率最高,到第20天CO₂排放量接近于零(0.120 mg CO₂/100 g/DW)。土壤中,相当于砂壤土中CF残留量0.63 %)。高效液相色谱法测定,CF残留量显著降低至0.34 %(0.16 mg/kg砂壤土)和6.38 %(2.99 mg/kg粘土),表明该联合体具有较强的生物修复能力。代谢物分析、基因表达分析和途径预测进一步支持了该联盟优于单个菌株的优势。降解CF所需的酶分布在所有6株细菌中。利用综合生物信息学和实验方法对CF降解途径进行了分子表征,证实了其由细菌六联体的个体成员进行的集体编码。马来酰乙酸还原酶(EC 1.3.1.32)对CF的完全分解至关重要,仅在P. aeruginosa中发现,这表明可能存在酶瓶颈和限制因素。未来的研究应侧重于丰富表达该酶的菌株,以提供能够提高降解效率的其他选择。六菌种联合体为修复氟利昂污染土壤提供了一种实用且环保的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Molecular characterization and soil bioremediation of Clodinafop-propargyl by a novel bacterial consortium
Clodinafop-propargyl (CF) is a widely used herbicide with high persistence in soil, raising concerns about its long-term environmental impact. Bacterial biodegradation provides a sustainable and eco-friendly strategy to mitigate CF contamination. This study evaluated the in-situ bioremediation potential of a six-member bacterial consortium (T3) by measuring CO₂ evolution as an indicator of microbial activity and monitoring CF residues in two soil types using microcosm systems. The consortium included Bacillus subtilis subsp. subtilis AZFS3 (LC599401.1), Bacillus pumilus AZFS5 (LC599402.1), Bacillus mojavensis AZFS15 (LC599403.1), Bacillus paramycoides AZFS18 (LC599406.1), Pseudomonas aeruginosa KZFS4 (LC599404.1), and Alcaligenes aquatilis KZFS11 (LC599405.1). T3 performance was compared to two individual strains representing Gram-positive and Gram-negative bacteria: B. subtilis subsp. subtilis AZFS3 (T1) and P. aeruginosa KZFS4 (T2). T3 achieved the highest degradation efficiency among all treatments, with CO₂ emissions nearing zero by day 20 (0.120 mg CO₂/100 g/DW. soil, equivalent to 0.63 % CF residue in sandy loam). CF residues were significantly reduced to 0.34 % (0.16 mg/kg sandy loam soil) and 6.38 % (2.99 mg/kg clay soil), underscoring the consortium’s strong bioremediation capacity, as determined by HPLC. Metabolite profiling, gene expression analysis, and pathway prediction further supported the consortium’s superiority over individual strains. The enzymes required for CF degradation were distributed across all six bacterial strains. The molecular characterization of the CF degradation pathway, using integrated bioinformatic and experimental approaches, confirmed its collective encoding by the individual members of the bacterial hexa-consortium. The Maleylacetate reductase (EC 1.3.1.32), crucial for the complete CF breakdown, was found exclusively in P. aeruginosa, suggesting a potential enzymatic bottleneck and a limiting factor. Future research should focus on enriching the consortium with additional strains expressing this enzyme to provide other alternatives capable of enhancing the degradation efficiency. The six-strain consortium offers a practical and environmentally sound solution for remediating CF-contaminated soils.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Environmental Technology & Innovation
Environmental Technology & Innovation Environmental Science-General Environmental Science
CiteScore
14.00
自引率
4.20%
发文量
435
审稿时长
74 days
期刊介绍: Environmental Technology & Innovation adopts a challenge-oriented approach to solutions by integrating natural sciences to promote a sustainable future. The journal aims to foster the creation and development of innovative products, technologies, and ideas that enhance the environment, with impacts across soil, air, water, and food in rural and urban areas. As a platform for disseminating scientific evidence for environmental protection and sustainable development, the journal emphasizes fundamental science, methodologies, tools, techniques, and policy considerations. It emphasizes the importance of science and technology in environmental benefits, including smarter, cleaner technologies for environmental protection, more efficient resource processing methods, and the evidence supporting their effectiveness.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信