基于三维非等边Arnold变换和URUK混沌映射的DPS协议量子图像加密方案

IF 2.5 3区 物理与天体物理 Q2 OPTICS
Bandana Mallick , Priyadarsan Parida , Chittaranjan Nayak , Manoj Kumar Panda , Bibhu Prasad , Gupteswar Sahu
{"title":"基于三维非等边Arnold变换和URUK混沌映射的DPS协议量子图像加密方案","authors":"Bandana Mallick ,&nbsp;Priyadarsan Parida ,&nbsp;Chittaranjan Nayak ,&nbsp;Manoj Kumar Panda ,&nbsp;Bibhu Prasad ,&nbsp;Gupteswar Sahu","doi":"10.1016/j.optcom.2025.132240","DOIUrl":null,"url":null,"abstract":"<div><div>There is an increasing demand for robust and secure methods to protect sensitive image data in the era of quantum computing. So, we have developed a novel quantum-inspired image encryption framework that integrates quantum bit-plane Real Ket (QBRK) decomposition, quantum bit-plane scrambling (QBPS), the URUK chaotic map, and the Differential Phase Shift (DPS) quantum key distribution (QKD) protocol over a Free Space Optics (FSO) channel. The developed model leverages QBRK-based bit-level processing to extract pixel-level quantum features, which are scrambled using the final key generated by combining the URUK chaotic map and DPS protocol. To enhance spatial diffusion, a 3D non-equilateral Arnold transform (3D NEAT) is applied to the scrambled image, followed by final encryption with a dynamically generated XOR key. The robustness of the developed scheme is validated through multiple visual and objective analysis metrics including entropy, Number of Pixel Change Rate (<span><math><mrow><mi>N</mi><mi>P</mi><mi>C</mi><mi>R</mi></mrow></math></span>), Unified Average Changing Intensity (<span><math><mrow><mi>U</mi><mi>A</mi><mi>C</mi><mi>I</mi></mrow></math></span>), Peak Signal-to-Noise Ratio (<span><math><mrow><mi>P</mi><mi>S</mi><mi>N</mi><mi>R</mi></mrow></math></span>), Fourier spectrums, Quantum Bit Error Rate (QBER), fidelity, and eavesdropping detection probability. Simulation results confirm that the designed technique ensures high security, strong randomness, and resistance against quantum eavesdropping, even under noisy FSO transmission environments. The proposed quantum encryption approach demonstrates the potential for secure and efficient image protection in next-generation quantum communication systems. The suggested algorithm is validated using the OptiSystem 15.1 software under the FSO channel. The efficacy of the developed encryption scheme is corroborated against various recently developed encryption methods and found to be effective.</div></div>","PeriodicalId":19586,"journal":{"name":"Optics Communications","volume":"592 ","pages":"Article 132240"},"PeriodicalIF":2.5000,"publicationDate":"2025-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quantum image encryption scheme using DPS protocol based on 3D non-equilateral Arnold transform and URUK chaotic map\",\"authors\":\"Bandana Mallick ,&nbsp;Priyadarsan Parida ,&nbsp;Chittaranjan Nayak ,&nbsp;Manoj Kumar Panda ,&nbsp;Bibhu Prasad ,&nbsp;Gupteswar Sahu\",\"doi\":\"10.1016/j.optcom.2025.132240\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>There is an increasing demand for robust and secure methods to protect sensitive image data in the era of quantum computing. So, we have developed a novel quantum-inspired image encryption framework that integrates quantum bit-plane Real Ket (QBRK) decomposition, quantum bit-plane scrambling (QBPS), the URUK chaotic map, and the Differential Phase Shift (DPS) quantum key distribution (QKD) protocol over a Free Space Optics (FSO) channel. The developed model leverages QBRK-based bit-level processing to extract pixel-level quantum features, which are scrambled using the final key generated by combining the URUK chaotic map and DPS protocol. To enhance spatial diffusion, a 3D non-equilateral Arnold transform (3D NEAT) is applied to the scrambled image, followed by final encryption with a dynamically generated XOR key. The robustness of the developed scheme is validated through multiple visual and objective analysis metrics including entropy, Number of Pixel Change Rate (<span><math><mrow><mi>N</mi><mi>P</mi><mi>C</mi><mi>R</mi></mrow></math></span>), Unified Average Changing Intensity (<span><math><mrow><mi>U</mi><mi>A</mi><mi>C</mi><mi>I</mi></mrow></math></span>), Peak Signal-to-Noise Ratio (<span><math><mrow><mi>P</mi><mi>S</mi><mi>N</mi><mi>R</mi></mrow></math></span>), Fourier spectrums, Quantum Bit Error Rate (QBER), fidelity, and eavesdropping detection probability. Simulation results confirm that the designed technique ensures high security, strong randomness, and resistance against quantum eavesdropping, even under noisy FSO transmission environments. The proposed quantum encryption approach demonstrates the potential for secure and efficient image protection in next-generation quantum communication systems. The suggested algorithm is validated using the OptiSystem 15.1 software under the FSO channel. The efficacy of the developed encryption scheme is corroborated against various recently developed encryption methods and found to be effective.</div></div>\",\"PeriodicalId\":19586,\"journal\":{\"name\":\"Optics Communications\",\"volume\":\"592 \",\"pages\":\"Article 132240\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2025-07-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Optics Communications\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0030401825007680\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optics Communications","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0030401825007680","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

摘要

在量子计算时代,对保护敏感图像数据的鲁棒和安全方法的需求越来越大。因此,我们开发了一种新的量子启发图像加密框架,该框架在自由空间光学(FSO)信道上集成了量子位平面实Ket (QBRK)分解、量子位平面置乱(QBPS)、URUK混沌映射和差分相移(DPS)量子密钥分发(QKD)协议。所开发的模型利用基于qbrk的位级处理来提取像素级量子特征,并使用结合URUK混沌映射和DPS协议生成的最终密钥对其进行加扰。为了增强空间扩散,将三维非等边阿诺德变换(3D NEAT)应用于打乱后的图像,然后使用动态生成的异或密钥进行最终加密。通过多个视觉和客观分析指标,包括熵、像素变化率(NPCR)、统一平均变化强度(UACI)、峰值信噪比(PSNR)、傅立叶谱、量子误码率(QBER)、保真度和窃听检测概率,验证了所开发方案的鲁棒性。仿真结果表明,即使在有噪声的FSO传输环境下,所设计的技术也具有高安全性、强随机性和抗量子窃听能力。提出的量子加密方法展示了在下一代量子通信系统中安全有效的图像保护的潜力。采用OptiSystem 15.1软件在FSO信道下对该算法进行了验证。所开发的加密方案的有效性与最近开发的各种加密方法进行了验证,发现是有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Quantum image encryption scheme using DPS protocol based on 3D non-equilateral Arnold transform and URUK chaotic map
There is an increasing demand for robust and secure methods to protect sensitive image data in the era of quantum computing. So, we have developed a novel quantum-inspired image encryption framework that integrates quantum bit-plane Real Ket (QBRK) decomposition, quantum bit-plane scrambling (QBPS), the URUK chaotic map, and the Differential Phase Shift (DPS) quantum key distribution (QKD) protocol over a Free Space Optics (FSO) channel. The developed model leverages QBRK-based bit-level processing to extract pixel-level quantum features, which are scrambled using the final key generated by combining the URUK chaotic map and DPS protocol. To enhance spatial diffusion, a 3D non-equilateral Arnold transform (3D NEAT) is applied to the scrambled image, followed by final encryption with a dynamically generated XOR key. The robustness of the developed scheme is validated through multiple visual and objective analysis metrics including entropy, Number of Pixel Change Rate (NPCR), Unified Average Changing Intensity (UACI), Peak Signal-to-Noise Ratio (PSNR), Fourier spectrums, Quantum Bit Error Rate (QBER), fidelity, and eavesdropping detection probability. Simulation results confirm that the designed technique ensures high security, strong randomness, and resistance against quantum eavesdropping, even under noisy FSO transmission environments. The proposed quantum encryption approach demonstrates the potential for secure and efficient image protection in next-generation quantum communication systems. The suggested algorithm is validated using the OptiSystem 15.1 software under the FSO channel. The efficacy of the developed encryption scheme is corroborated against various recently developed encryption methods and found to be effective.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Optics Communications
Optics Communications 物理-光学
CiteScore
5.10
自引率
8.30%
发文量
681
审稿时长
38 days
期刊介绍: Optics Communications invites original and timely contributions containing new results in various fields of optics and photonics. The journal considers theoretical and experimental research in areas ranging from the fundamental properties of light to technological applications. Topics covered include classical and quantum optics, optical physics and light-matter interactions, lasers, imaging, guided-wave optics and optical information processing. Manuscripts should offer clear evidence of novelty and significance. Papers concentrating on mathematical and computational issues, with limited connection to optics, are not suitable for publication in the Journal. Similarly, small technical advances, or papers concerned only with engineering applications or issues of materials science fall outside the journal scope.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信