稳定器状态的波函数与Wehrl猜想

IF 2.3 1区 数学 Q1 MATHEMATICS
Fabio Nicola
{"title":"稳定器状态的波函数与Wehrl猜想","authors":"Fabio Nicola","doi":"10.1016/j.matpur.2025.103778","DOIUrl":null,"url":null,"abstract":"<div><div>We focus on quantum systems represented by a Hilbert space <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>(</mo><mi>A</mi><mo>)</mo></math></span>, where <em>A</em> is a locally compact Abelian group that contains a compact open subgroup. We examine two interconnected issues related to Weyl-Heisenberg operators. First, we provide a complete and elegant solution to the problem of describing the stabilizer states in terms of their wave functions — an issue that arises in quantum information theory. Subsequently, we demonstrate that the stabilizer states are exactly the minimizers of the Wehrl entropy, thereby solving the Wehrl-type entropy conjecture for any such group (in particular, for finite-dimensional vector spaces over non-Archimedean local fields). Additionally, we construct a moduli space for the set of stabilizer states, that is, a parametrization of this set, that endows it with a natural algebraic structure, and we derive a formula for the number of stabilizer states when <em>A</em> is finite. Indeed, these results are novel even for finite Abelian groups.</div></div>","PeriodicalId":51071,"journal":{"name":"Journal de Mathematiques Pures et Appliquees","volume":"205 ","pages":"Article 103778"},"PeriodicalIF":2.3000,"publicationDate":"2025-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The wave function of stabilizer states and the Wehrl conjecture\",\"authors\":\"Fabio Nicola\",\"doi\":\"10.1016/j.matpur.2025.103778\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We focus on quantum systems represented by a Hilbert space <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>(</mo><mi>A</mi><mo>)</mo></math></span>, where <em>A</em> is a locally compact Abelian group that contains a compact open subgroup. We examine two interconnected issues related to Weyl-Heisenberg operators. First, we provide a complete and elegant solution to the problem of describing the stabilizer states in terms of their wave functions — an issue that arises in quantum information theory. Subsequently, we demonstrate that the stabilizer states are exactly the minimizers of the Wehrl entropy, thereby solving the Wehrl-type entropy conjecture for any such group (in particular, for finite-dimensional vector spaces over non-Archimedean local fields). Additionally, we construct a moduli space for the set of stabilizer states, that is, a parametrization of this set, that endows it with a natural algebraic structure, and we derive a formula for the number of stabilizer states when <em>A</em> is finite. Indeed, these results are novel even for finite Abelian groups.</div></div>\",\"PeriodicalId\":51071,\"journal\":{\"name\":\"Journal de Mathematiques Pures et Appliquees\",\"volume\":\"205 \",\"pages\":\"Article 103778\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-07-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal de Mathematiques Pures et Appliquees\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0021782425001229\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal de Mathematiques Pures et Appliquees","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021782425001229","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们关注由Hilbert空间L2(a)表示的量子系统,其中a是包含紧开子群的局部紧阿贝尔群。我们检查两个相互关联的问题有关韦尔-海森堡算子。首先,我们提供了一个完整而优雅的解决方案来描述稳定器状态的波函数问题-量子信息理论中出现的一个问题。随后,我们证明了稳定器状态正是Wehrl熵的最小值,从而解决了任何此类群(特别是非阿基米德局部场上的有限维向量空间)的Wehrl型熵猜想。另外,构造了稳定状态集合的模空间,即该集合的参数化,使其具有自然的代数结构,并导出了a有限时稳定状态个数的公式。事实上,即使对于有限阿贝尔群,这些结果也是新颖的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The wave function of stabilizer states and the Wehrl conjecture
We focus on quantum systems represented by a Hilbert space L2(A), where A is a locally compact Abelian group that contains a compact open subgroup. We examine two interconnected issues related to Weyl-Heisenberg operators. First, we provide a complete and elegant solution to the problem of describing the stabilizer states in terms of their wave functions — an issue that arises in quantum information theory. Subsequently, we demonstrate that the stabilizer states are exactly the minimizers of the Wehrl entropy, thereby solving the Wehrl-type entropy conjecture for any such group (in particular, for finite-dimensional vector spaces over non-Archimedean local fields). Additionally, we construct a moduli space for the set of stabilizer states, that is, a parametrization of this set, that endows it with a natural algebraic structure, and we derive a formula for the number of stabilizer states when A is finite. Indeed, these results are novel even for finite Abelian groups.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.30
自引率
0.00%
发文量
84
审稿时长
6 months
期刊介绍: Published from 1836 by the leading French mathematicians, the Journal des Mathématiques Pures et Appliquées is the second oldest international mathematical journal in the world. It was founded by Joseph Liouville and published continuously by leading French Mathematicians - among the latest: Jean Leray, Jacques-Louis Lions, Paul Malliavin and presently Pierre-Louis Lions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信