有机半导体纳米颗粒形成的意外途径。

IF 16 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
ACS Nano Pub Date : 2025-07-31 DOI:10.1021/acsnano.5c07335
Arthur E. Bouchez, Connor R. Firth, Arnau Bertran, Colin Jeanguenat, Jun-Ho Yum and Kevin Sivula*, 
{"title":"有机半导体纳米颗粒形成的意外途径。","authors":"Arthur E. Bouchez,&nbsp;Connor R. Firth,&nbsp;Arnau Bertran,&nbsp;Colin Jeanguenat,&nbsp;Jun-Ho Yum and Kevin Sivula*,&nbsp;","doi":"10.1021/acsnano.5c07335","DOIUrl":null,"url":null,"abstract":"<p >Organic semiconductor (OSC) nanoparticles (NPs) are promising for numerous applications including greener organic photovoltaics and heterogeneous photocatalysts for solar H<sub>2</sub> production. Single component or mixed bulk-heterojunction (BHJ) OSC NPs are commonly prepared from conventional polymer OSCs via the miniemulsion-evaporation method using ultrasonication. However, realizing the expected NP size control with this approach remains elusive, limiting optimization. Here, we demonstrate that the presumed miniemulsion-evaporation mechanism is not the principal pathway forming NPs. Predominantly, a direct extraction of OSCs from the organic to the aqueous phase during ultrasonication results in NP formation prior to organic solvent evaporation, rendering NP size insensitive to emulsion parameters. By replacing ultrasonication with lower-energy shear mixing, we control the competition between these pathways, achieving tunable NP sizes via a true emulsion-evaporation mechanism. This enables the first demonstration of BHJ NP size effects on photocatalytic H<sub>2</sub> evolution, with a ∼2-fold increase in H<sub>2</sub> production when reducing NP diameter from 230 to 160 nm. However, the observed ∼14-fold higher performance of direct-extraction BHJ NPs (25 nm diameter) highlights the need to reassess OSC NP formation. Overall, this work advances an understanding of photocatalytic activity via size optimization and offers a greener processing route by eliminating organic solvent evaporation.</p>","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":"19 31","pages":"28469–28477"},"PeriodicalIF":16.0000,"publicationDate":"2025-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/pdf/10.1021/acsnano.5c07335","citationCount":"0","resultStr":"{\"title\":\"Unexpected Pathway in Organic Semiconductor Nanoparticle Formation\",\"authors\":\"Arthur E. Bouchez,&nbsp;Connor R. Firth,&nbsp;Arnau Bertran,&nbsp;Colin Jeanguenat,&nbsp;Jun-Ho Yum and Kevin Sivula*,&nbsp;\",\"doi\":\"10.1021/acsnano.5c07335\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Organic semiconductor (OSC) nanoparticles (NPs) are promising for numerous applications including greener organic photovoltaics and heterogeneous photocatalysts for solar H<sub>2</sub> production. Single component or mixed bulk-heterojunction (BHJ) OSC NPs are commonly prepared from conventional polymer OSCs via the miniemulsion-evaporation method using ultrasonication. However, realizing the expected NP size control with this approach remains elusive, limiting optimization. Here, we demonstrate that the presumed miniemulsion-evaporation mechanism is not the principal pathway forming NPs. Predominantly, a direct extraction of OSCs from the organic to the aqueous phase during ultrasonication results in NP formation prior to organic solvent evaporation, rendering NP size insensitive to emulsion parameters. By replacing ultrasonication with lower-energy shear mixing, we control the competition between these pathways, achieving tunable NP sizes via a true emulsion-evaporation mechanism. This enables the first demonstration of BHJ NP size effects on photocatalytic H<sub>2</sub> evolution, with a ∼2-fold increase in H<sub>2</sub> production when reducing NP diameter from 230 to 160 nm. However, the observed ∼14-fold higher performance of direct-extraction BHJ NPs (25 nm diameter) highlights the need to reassess OSC NP formation. Overall, this work advances an understanding of photocatalytic activity via size optimization and offers a greener processing route by eliminating organic solvent evaporation.</p>\",\"PeriodicalId\":21,\"journal\":{\"name\":\"ACS Nano\",\"volume\":\"19 31\",\"pages\":\"28469–28477\"},\"PeriodicalIF\":16.0000,\"publicationDate\":\"2025-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.acs.org/doi/pdf/10.1021/acsnano.5c07335\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Nano\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsnano.5c07335\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsnano.5c07335","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

有机半导体(OSC)纳米颗粒(NPs)具有广泛的应用前景,包括绿色有机光伏发电和用于太阳能制氢的非均相光催化剂。单组分或混合体积异质结(BHJ) OSC纳米粒子通常是由传统的聚合物OSC通过超声微乳液蒸发法制备的。然而,用这种方法实现预期的NP大小控制仍然是难以捉摸的,限制了优化。在这里,我们证明了假定的小乳液蒸发机制不是形成NPs的主要途径。主要的是,在超声波过程中,OSCs从有机相直接萃取到水相,导致NP在有机溶剂蒸发之前形成,使得NP大小对乳液参数不敏感。通过用低能量剪切混合取代超声,我们控制了这些途径之间的竞争,通过真正的乳液蒸发机制实现了可调的NP大小。这首次证明了BHJ NP尺寸对光催化H2演化的影响,当NP直径从230 nm减小到160 nm时,H2产量增加了2倍。然而,直接提取的BHJ NP(直径25 nm)的性能提高了约14倍,这凸显了重新评估OSC NP形成的必要性。总的来说,这项工作通过尺寸优化促进了对光催化活性的理解,并通过消除有机溶剂蒸发提供了更环保的处理途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Unexpected Pathway in Organic Semiconductor Nanoparticle Formation

Organic semiconductor (OSC) nanoparticles (NPs) are promising for numerous applications including greener organic photovoltaics and heterogeneous photocatalysts for solar H2 production. Single component or mixed bulk-heterojunction (BHJ) OSC NPs are commonly prepared from conventional polymer OSCs via the miniemulsion-evaporation method using ultrasonication. However, realizing the expected NP size control with this approach remains elusive, limiting optimization. Here, we demonstrate that the presumed miniemulsion-evaporation mechanism is not the principal pathway forming NPs. Predominantly, a direct extraction of OSCs from the organic to the aqueous phase during ultrasonication results in NP formation prior to organic solvent evaporation, rendering NP size insensitive to emulsion parameters. By replacing ultrasonication with lower-energy shear mixing, we control the competition between these pathways, achieving tunable NP sizes via a true emulsion-evaporation mechanism. This enables the first demonstration of BHJ NP size effects on photocatalytic H2 evolution, with a ∼2-fold increase in H2 production when reducing NP diameter from 230 to 160 nm. However, the observed ∼14-fold higher performance of direct-extraction BHJ NPs (25 nm diameter) highlights the need to reassess OSC NP formation. Overall, this work advances an understanding of photocatalytic activity via size optimization and offers a greener processing route by eliminating organic solvent evaporation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Nano
ACS Nano 工程技术-材料科学:综合
CiteScore
26.00
自引率
4.10%
发文量
1627
审稿时长
1.7 months
期刊介绍: ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信