{"title":"无创皮肤生物传感器监测糖尿病。","authors":"Ali Sedighi,Tianyu Kou,Hui Huang,Yi Li","doi":"10.1007/s40820-025-01843-9","DOIUrl":null,"url":null,"abstract":"Diabetes mellitus represents a major global health issue, driving the need for noninvasive alternatives to traditional blood glucose monitoring methods. Recent advancements in wearable technology have introduced skin-interfaced biosensors capable of analyzing sweat and skin biomarkers, providing innovative solutions for diabetes diagnosis and monitoring. This review comprehensively discusses the current developments in noninvasive wearable biosensors, emphasizing simultaneous detection of biochemical biomarkers (such as glucose, cortisol, lactate, branched-chain amino acids, and cytokines) and physiological signals (including heart rate, blood pressure, and sweat rate) for accurate, personalized diabetes management. We explore innovations in multimodal sensor design, materials science, biorecognition elements, and integration techniques, highlighting the importance of advanced data analytics, artificial intelligence-driven predictive algorithms, and closed-loop therapeutic systems. Additionally, the review addresses ongoing challenges in biomarker validation, sensor stability, user compliance, data privacy, and regulatory considerations. A holistic, multimodal approach enabled by these next-generation wearable biosensors holds significant potential for improving patient outcomes and facilitating proactive healthcare interventions in diabetes management.","PeriodicalId":714,"journal":{"name":"Nano-Micro Letters","volume":"14 1","pages":"16"},"PeriodicalIF":36.3000,"publicationDate":"2025-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Noninvasive On-Skin Biosensors for Monitoring Diabetes Mellitus.\",\"authors\":\"Ali Sedighi,Tianyu Kou,Hui Huang,Yi Li\",\"doi\":\"10.1007/s40820-025-01843-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Diabetes mellitus represents a major global health issue, driving the need for noninvasive alternatives to traditional blood glucose monitoring methods. Recent advancements in wearable technology have introduced skin-interfaced biosensors capable of analyzing sweat and skin biomarkers, providing innovative solutions for diabetes diagnosis and monitoring. This review comprehensively discusses the current developments in noninvasive wearable biosensors, emphasizing simultaneous detection of biochemical biomarkers (such as glucose, cortisol, lactate, branched-chain amino acids, and cytokines) and physiological signals (including heart rate, blood pressure, and sweat rate) for accurate, personalized diabetes management. We explore innovations in multimodal sensor design, materials science, biorecognition elements, and integration techniques, highlighting the importance of advanced data analytics, artificial intelligence-driven predictive algorithms, and closed-loop therapeutic systems. Additionally, the review addresses ongoing challenges in biomarker validation, sensor stability, user compliance, data privacy, and regulatory considerations. A holistic, multimodal approach enabled by these next-generation wearable biosensors holds significant potential for improving patient outcomes and facilitating proactive healthcare interventions in diabetes management.\",\"PeriodicalId\":714,\"journal\":{\"name\":\"Nano-Micro Letters\",\"volume\":\"14 1\",\"pages\":\"16\"},\"PeriodicalIF\":36.3000,\"publicationDate\":\"2025-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano-Micro Letters\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1007/s40820-025-01843-9\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano-Micro Letters","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1007/s40820-025-01843-9","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Engineering","Score":null,"Total":0}
Noninvasive On-Skin Biosensors for Monitoring Diabetes Mellitus.
Diabetes mellitus represents a major global health issue, driving the need for noninvasive alternatives to traditional blood glucose monitoring methods. Recent advancements in wearable technology have introduced skin-interfaced biosensors capable of analyzing sweat and skin biomarkers, providing innovative solutions for diabetes diagnosis and monitoring. This review comprehensively discusses the current developments in noninvasive wearable biosensors, emphasizing simultaneous detection of biochemical biomarkers (such as glucose, cortisol, lactate, branched-chain amino acids, and cytokines) and physiological signals (including heart rate, blood pressure, and sweat rate) for accurate, personalized diabetes management. We explore innovations in multimodal sensor design, materials science, biorecognition elements, and integration techniques, highlighting the importance of advanced data analytics, artificial intelligence-driven predictive algorithms, and closed-loop therapeutic systems. Additionally, the review addresses ongoing challenges in biomarker validation, sensor stability, user compliance, data privacy, and regulatory considerations. A holistic, multimodal approach enabled by these next-generation wearable biosensors holds significant potential for improving patient outcomes and facilitating proactive healthcare interventions in diabetes management.
期刊介绍:
Nano-Micro Letters is a peer-reviewed, international, interdisciplinary, and open-access journal published under the SpringerOpen brand.
Nano-Micro Letters focuses on the science, experiments, engineering, technologies, and applications of nano- or microscale structures and systems in various fields such as physics, chemistry, biology, material science, and pharmacy.It also explores the expanding interfaces between these fields.
Nano-Micro Letters particularly emphasizes the bottom-up approach in the length scale from nano to micro. This approach is crucial for achieving industrial applications in nanotechnology, as it involves the assembly, modification, and control of nanostructures on a microscale.