{"title":"具有非生物多核金属中心的细胞因子设计酶具有内在和外在的催化作用","authors":"Akiko Ueno, Fumiko Takida, Tomoki Kita, Takuro Ishii, Tomoki Himiyama, Takuya Mabuchi, Yasunori Okamoto","doi":"10.1038/s41467-025-61909-5","DOIUrl":null,"url":null,"abstract":"<p>A designer enzyme consisting of an abiological molecule incorporated into a natural protein has been developed as an exceptionally chemoselective catalyst, highlighting that the internal space of proteins is highly beneficial for enhancing catalytic performance. However, other features of proteins have received less attention in designer enzymes, for e.g., their use as ligands to construct abiological (multinuclear) metal centers and their intrinsic functions that have often been traded off for a new function. Here, grafting a synthetic trinuclear zinc complex inside a human cytokine macrophage migration inhibitory factor (MIF) scaffold using solely amino-acid side chains leads to a designer multi-metalloenzyme with extrinsic and intrinsic functions. The crystal structure of the designer tri-zinc enzyme verifies the accuracy of our design process based on geometry optimizations and quantum-chemical calculations. The extrinsic catalytic performance of this designer enzyme is of the highest class and comparable to that of previously reported designer zinc hydrolases. Importantly, an intrinsic function of MIF, i.e., its tautomerase activity, is maintained in this designer tri-zinc enzyme. Considering that cytokines are originally expressed in response to in vivo events, this cytokine-based designer metalloenzyme holds promising potential as a synthetic biological tool for the self-adaptive regulation of life phenomena.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"733 1","pages":""},"PeriodicalIF":15.7000,"publicationDate":"2025-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A cytokine-based designer enzyme with an abiological multinuclear metal center exhibits intrinsic and extrinsic catalysis\",\"authors\":\"Akiko Ueno, Fumiko Takida, Tomoki Kita, Takuro Ishii, Tomoki Himiyama, Takuya Mabuchi, Yasunori Okamoto\",\"doi\":\"10.1038/s41467-025-61909-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>A designer enzyme consisting of an abiological molecule incorporated into a natural protein has been developed as an exceptionally chemoselective catalyst, highlighting that the internal space of proteins is highly beneficial for enhancing catalytic performance. However, other features of proteins have received less attention in designer enzymes, for e.g., their use as ligands to construct abiological (multinuclear) metal centers and their intrinsic functions that have often been traded off for a new function. Here, grafting a synthetic trinuclear zinc complex inside a human cytokine macrophage migration inhibitory factor (MIF) scaffold using solely amino-acid side chains leads to a designer multi-metalloenzyme with extrinsic and intrinsic functions. The crystal structure of the designer tri-zinc enzyme verifies the accuracy of our design process based on geometry optimizations and quantum-chemical calculations. The extrinsic catalytic performance of this designer enzyme is of the highest class and comparable to that of previously reported designer zinc hydrolases. Importantly, an intrinsic function of MIF, i.e., its tautomerase activity, is maintained in this designer tri-zinc enzyme. Considering that cytokines are originally expressed in response to in vivo events, this cytokine-based designer metalloenzyme holds promising potential as a synthetic biological tool for the self-adaptive regulation of life phenomena.</p>\",\"PeriodicalId\":19066,\"journal\":{\"name\":\"Nature Communications\",\"volume\":\"733 1\",\"pages\":\"\"},\"PeriodicalIF\":15.7000,\"publicationDate\":\"2025-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Communications\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41467-025-61909-5\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-61909-5","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
A cytokine-based designer enzyme with an abiological multinuclear metal center exhibits intrinsic and extrinsic catalysis
A designer enzyme consisting of an abiological molecule incorporated into a natural protein has been developed as an exceptionally chemoselective catalyst, highlighting that the internal space of proteins is highly beneficial for enhancing catalytic performance. However, other features of proteins have received less attention in designer enzymes, for e.g., their use as ligands to construct abiological (multinuclear) metal centers and their intrinsic functions that have often been traded off for a new function. Here, grafting a synthetic trinuclear zinc complex inside a human cytokine macrophage migration inhibitory factor (MIF) scaffold using solely amino-acid side chains leads to a designer multi-metalloenzyme with extrinsic and intrinsic functions. The crystal structure of the designer tri-zinc enzyme verifies the accuracy of our design process based on geometry optimizations and quantum-chemical calculations. The extrinsic catalytic performance of this designer enzyme is of the highest class and comparable to that of previously reported designer zinc hydrolases. Importantly, an intrinsic function of MIF, i.e., its tautomerase activity, is maintained in this designer tri-zinc enzyme. Considering that cytokines are originally expressed in response to in vivo events, this cytokine-based designer metalloenzyme holds promising potential as a synthetic biological tool for the self-adaptive regulation of life phenomena.
期刊介绍:
Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.