光子集成太赫兹传输线

IF 15.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Yazan Lampert, Amirhassan Shams-Ansari, Aleksei Gaier, Alessandro Tomasino, Xuhui Cao, Leticia Magalhaes, Shima Rajabali, Marko Lončar, Ileana-Cristina Benea-Chelmus
{"title":"光子集成太赫兹传输线","authors":"Yazan Lampert, Amirhassan Shams-Ansari, Aleksei Gaier, Alessandro Tomasino, Xuhui Cao, Leticia Magalhaes, Shima Rajabali, Marko Lončar, Ileana-Cristina Benea-Chelmus","doi":"10.1038/s41467-025-62267-y","DOIUrl":null,"url":null,"abstract":"<p>Modern communication and sensing technologies connect the optical domain with the microwave domain. Accessing the terahertz region from 100 GHz to 10 THz is critical for providing larger bandwidths capabilities. Despite progress in integrated electronics, they lack a direct link to the optical domain, and face challenges with increasing frequencies ( &gt; 1 THz). Electro-optic effects offer promising capabilities but are currently limited to bulk nonlinear crystals, missing out miniaturization, or to sub-terahertz bandwidths. Here, we address these challenges by realizing photonic circuits that integrate terahertz transmission lines on thin-film lithium niobate (TFLN). By providing terahertz field confinement and phase-matched interaction with optical fields, our miniaturized devices support low-noise and broad bandwidth terahertz generation and detection spanning four octaves (200 GHz to &gt; 3 THz). By leveraging photonics’ advantages in low-loss and high-speed control, our platform achieves control over the terahertz spectrum and its amplitude, paving the way for compact and power-efficient devices with applications in telecommunications, spectroscopy, quantum electrodynamics and computing.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"1 1","pages":""},"PeriodicalIF":15.7000,"publicationDate":"2025-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Photonics-integrated terahertz transmission lines\",\"authors\":\"Yazan Lampert, Amirhassan Shams-Ansari, Aleksei Gaier, Alessandro Tomasino, Xuhui Cao, Leticia Magalhaes, Shima Rajabali, Marko Lončar, Ileana-Cristina Benea-Chelmus\",\"doi\":\"10.1038/s41467-025-62267-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Modern communication and sensing technologies connect the optical domain with the microwave domain. Accessing the terahertz region from 100 GHz to 10 THz is critical for providing larger bandwidths capabilities. Despite progress in integrated electronics, they lack a direct link to the optical domain, and face challenges with increasing frequencies ( &gt; 1 THz). Electro-optic effects offer promising capabilities but are currently limited to bulk nonlinear crystals, missing out miniaturization, or to sub-terahertz bandwidths. Here, we address these challenges by realizing photonic circuits that integrate terahertz transmission lines on thin-film lithium niobate (TFLN). By providing terahertz field confinement and phase-matched interaction with optical fields, our miniaturized devices support low-noise and broad bandwidth terahertz generation and detection spanning four octaves (200 GHz to &gt; 3 THz). By leveraging photonics’ advantages in low-loss and high-speed control, our platform achieves control over the terahertz spectrum and its amplitude, paving the way for compact and power-efficient devices with applications in telecommunications, spectroscopy, quantum electrodynamics and computing.</p>\",\"PeriodicalId\":19066,\"journal\":{\"name\":\"Nature Communications\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":15.7000,\"publicationDate\":\"2025-07-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Communications\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41467-025-62267-y\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-62267-y","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

现代通信和传感技术将光域与微波域连接起来。访问100ghz到10thz的太赫兹区域对于提供更大的带宽能力至关重要。尽管集成电子学取得了进步,但它们缺乏与光域的直接联系,并且面临频率增加(> 1 THz)的挑战。电光效应提供了有前途的能力,但目前仅限于块状非线性晶体,缺少小型化,或亚太赫兹带宽。在这里,我们通过实现在薄膜铌酸锂(TFLN)上集成太赫兹传输线的光子电路来解决这些挑战。通过提供太赫兹场约束和光场相匹配的相互作用,我们的小型化设备支持低噪声和宽带宽太赫兹产生和检测,跨越四个倍频(200ghz至3thz)。通过利用光子学在低损耗和高速控制方面的优势,我们的平台实现了对太赫兹频谱及其幅度的控制,为在电信,光谱学,量子电动力学和计算领域应用的紧凑和节能设备铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Photonics-integrated terahertz transmission lines

Photonics-integrated terahertz transmission lines

Modern communication and sensing technologies connect the optical domain with the microwave domain. Accessing the terahertz region from 100 GHz to 10 THz is critical for providing larger bandwidths capabilities. Despite progress in integrated electronics, they lack a direct link to the optical domain, and face challenges with increasing frequencies ( > 1 THz). Electro-optic effects offer promising capabilities but are currently limited to bulk nonlinear crystals, missing out miniaturization, or to sub-terahertz bandwidths. Here, we address these challenges by realizing photonic circuits that integrate terahertz transmission lines on thin-film lithium niobate (TFLN). By providing terahertz field confinement and phase-matched interaction with optical fields, our miniaturized devices support low-noise and broad bandwidth terahertz generation and detection spanning four octaves (200 GHz to > 3 THz). By leveraging photonics’ advantages in low-loss and high-speed control, our platform achieves control over the terahertz spectrum and its amplitude, paving the way for compact and power-efficient devices with applications in telecommunications, spectroscopy, quantum electrodynamics and computing.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信