Qinqin Yang, Xiaolin Geng, Hongwei Li, Yanqing Cong, Ming Zhou, Zhaoyang Zhou, Yune Cao, Yan Yan, Na Zhang, Yingfang Zhu, Tao Lin
{"title":"对番茄花蕾的全基因组表达图谱显示,slercerf162 - slerf162模块与基础耐热性相关","authors":"Qinqin Yang, Xiaolin Geng, Hongwei Li, Yanqing Cong, Ming Zhou, Zhaoyang Zhou, Yune Cao, Yan Yan, Na Zhang, Yingfang Zhu, Tao Lin","doi":"10.1093/hr/uhaf205","DOIUrl":null,"url":null,"abstract":"High temperatures impair pollen viability and reduce fruit set, ultimately affecting the yield of crops. Understanding the genetic components involved in the heat stress (HS) response is essential for developing climate-resilient crop varieties. However, the regulatory mechanisms governing heat stress responses during pollen development in tomato (Solanum lycopersicum) remain unexplored. In this study, we identified the microspore mother cell stage as the most heat-sensitive phase in tomato pollen development. Furthermore, we generated a comprehensive RNA expression profile of tomato flower buds under HS, encompassing 8,051 mRNAs, 5,738 lncRNAs, 62 circRNAs, and 24 miRNAs. Comparative analysis of these RNAs revealed three distinct response phases, early, late, and dual, and enabled the identification of co-expression modules comprising both coding and noncoding transcripts. Among these, SlERF162 was identified as a key regulatory gene that promotes pollen thermotolerance. We further identified the lncRNA TCONS_00023929 (designated SllncERF162) as a positive regulator of SlERF162 expression. Both SlERF162 and SllncERF162 contributed to maintaining pollen viability under HS. Additional experiments demonstrated that the SllncERF162–SlERF162 regulatory module enhances basal thermotolerance by directly targeting and activating the heat-responsive genes SlHsfB1 and SlsHSP. Overall, this study provides a high-resolution expression atlas of RNAs under HS and uncovers a novel noncoding RNA-mediated regulatory network that promotes thermotolerance during tomato pollen development.","PeriodicalId":13179,"journal":{"name":"Horticulture Research","volume":"140 1","pages":""},"PeriodicalIF":8.5000,"publicationDate":"2025-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Genome-wide expression atlas of tomato flower buds revealed the SllncERF162-SlERF162 module associated with basal thermotolerance\",\"authors\":\"Qinqin Yang, Xiaolin Geng, Hongwei Li, Yanqing Cong, Ming Zhou, Zhaoyang Zhou, Yune Cao, Yan Yan, Na Zhang, Yingfang Zhu, Tao Lin\",\"doi\":\"10.1093/hr/uhaf205\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"High temperatures impair pollen viability and reduce fruit set, ultimately affecting the yield of crops. Understanding the genetic components involved in the heat stress (HS) response is essential for developing climate-resilient crop varieties. However, the regulatory mechanisms governing heat stress responses during pollen development in tomato (Solanum lycopersicum) remain unexplored. In this study, we identified the microspore mother cell stage as the most heat-sensitive phase in tomato pollen development. Furthermore, we generated a comprehensive RNA expression profile of tomato flower buds under HS, encompassing 8,051 mRNAs, 5,738 lncRNAs, 62 circRNAs, and 24 miRNAs. Comparative analysis of these RNAs revealed three distinct response phases, early, late, and dual, and enabled the identification of co-expression modules comprising both coding and noncoding transcripts. Among these, SlERF162 was identified as a key regulatory gene that promotes pollen thermotolerance. We further identified the lncRNA TCONS_00023929 (designated SllncERF162) as a positive regulator of SlERF162 expression. Both SlERF162 and SllncERF162 contributed to maintaining pollen viability under HS. Additional experiments demonstrated that the SllncERF162–SlERF162 regulatory module enhances basal thermotolerance by directly targeting and activating the heat-responsive genes SlHsfB1 and SlsHSP. Overall, this study provides a high-resolution expression atlas of RNAs under HS and uncovers a novel noncoding RNA-mediated regulatory network that promotes thermotolerance during tomato pollen development.\",\"PeriodicalId\":13179,\"journal\":{\"name\":\"Horticulture Research\",\"volume\":\"140 1\",\"pages\":\"\"},\"PeriodicalIF\":8.5000,\"publicationDate\":\"2025-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Horticulture Research\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1093/hr/uhaf205\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Agricultural and Biological Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Horticulture Research","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1093/hr/uhaf205","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
Genome-wide expression atlas of tomato flower buds revealed the SllncERF162-SlERF162 module associated with basal thermotolerance
High temperatures impair pollen viability and reduce fruit set, ultimately affecting the yield of crops. Understanding the genetic components involved in the heat stress (HS) response is essential for developing climate-resilient crop varieties. However, the regulatory mechanisms governing heat stress responses during pollen development in tomato (Solanum lycopersicum) remain unexplored. In this study, we identified the microspore mother cell stage as the most heat-sensitive phase in tomato pollen development. Furthermore, we generated a comprehensive RNA expression profile of tomato flower buds under HS, encompassing 8,051 mRNAs, 5,738 lncRNAs, 62 circRNAs, and 24 miRNAs. Comparative analysis of these RNAs revealed three distinct response phases, early, late, and dual, and enabled the identification of co-expression modules comprising both coding and noncoding transcripts. Among these, SlERF162 was identified as a key regulatory gene that promotes pollen thermotolerance. We further identified the lncRNA TCONS_00023929 (designated SllncERF162) as a positive regulator of SlERF162 expression. Both SlERF162 and SllncERF162 contributed to maintaining pollen viability under HS. Additional experiments demonstrated that the SllncERF162–SlERF162 regulatory module enhances basal thermotolerance by directly targeting and activating the heat-responsive genes SlHsfB1 and SlsHSP. Overall, this study provides a high-resolution expression atlas of RNAs under HS and uncovers a novel noncoding RNA-mediated regulatory network that promotes thermotolerance during tomato pollen development.
期刊介绍:
Horticulture Research, an open access journal affiliated with Nanjing Agricultural University, has achieved the prestigious ranking of number one in the Horticulture category of the Journal Citation Reports ™ from Clarivate, 2022. As a leading publication in the field, the journal is dedicated to disseminating original research articles, comprehensive reviews, insightful perspectives, thought-provoking comments, and valuable correspondence articles and letters to the editor. Its scope encompasses all vital aspects of horticultural plants and disciplines, such as biotechnology, breeding, cellular and molecular biology, evolution, genetics, inter-species interactions, physiology, and the origination and domestication of crops.