超声纳米网络激活的细胞外电子转移用于胰腺β细胞的无线非遗传刺激

IF 16.9 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Dr. Yanling You, Dr. Junjie Jiang, Dr. Zhixin Chen, Dr. Ya-Xuan Zhu, Dr. Yihan Chen, Prof. Han Lin, Prof. Jianlin Shi
{"title":"超声纳米网络激活的细胞外电子转移用于胰腺β细胞的无线非遗传刺激","authors":"Dr. Yanling You,&nbsp;Dr. Junjie Jiang,&nbsp;Dr. Zhixin Chen,&nbsp;Dr. Ya-Xuan Zhu,&nbsp;Dr. Yihan Chen,&nbsp;Prof. Han Lin,&nbsp;Prof. Jianlin Shi","doi":"10.1002/anie.202502780","DOIUrl":null,"url":null,"abstract":"<p>Engineered cell-based therapy is an emerging approach for treating intractable diseases, in which the remote control of cellular behavior necessitates robust physical input-sensing-response systems. Nanomaterials represent promising tools to enable wireless remote control of cells. To achieve this, the precise anchoring of nanomaterials to target cells is crucial for nanomaterial-engineered cells to prevent undesired effects such as endocytosis and diffusion. Herein, we describe a general cell engineering strategy using nanomaterials to achieve remote-controlled and sustained insulin release from the engineered pancreatic β cells. The prepared nanocomposite, termed TCN, is composed of defect-rich titanium oxide quantum dots with ultrasound-electric conversion effect and fibrous carbon substrate. In vitro experiments demonstrate that the TCN enables cell surface engineering through carbon substrate adsorption onto pancreatic β cells without chemical modification, while the TiO<sub>x</sub> quantum dots of TCN enable effective ultrasound-responsive electrical stimulation to activate insulin release from β cells. Furthermore, we demonstrate that the subcutaneous implantation of TCN-engineered β cell complexes in type 1 and type 2 diabetic mice enables the restoration of normoglycemia by ultrasound stimulation, establishing a nanomaterials-enabled controlled cell therapy paradigm for diabetes.</p>","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"64 37","pages":""},"PeriodicalIF":16.9000,"publicationDate":"2025-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sonoelectric Nanonet-Activated Extracellular Electron Transfer for Wireless Non-Genetic Stimulation of Pancreatic β Cells\",\"authors\":\"Dr. Yanling You,&nbsp;Dr. Junjie Jiang,&nbsp;Dr. Zhixin Chen,&nbsp;Dr. Ya-Xuan Zhu,&nbsp;Dr. Yihan Chen,&nbsp;Prof. Han Lin,&nbsp;Prof. Jianlin Shi\",\"doi\":\"10.1002/anie.202502780\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Engineered cell-based therapy is an emerging approach for treating intractable diseases, in which the remote control of cellular behavior necessitates robust physical input-sensing-response systems. Nanomaterials represent promising tools to enable wireless remote control of cells. To achieve this, the precise anchoring of nanomaterials to target cells is crucial for nanomaterial-engineered cells to prevent undesired effects such as endocytosis and diffusion. Herein, we describe a general cell engineering strategy using nanomaterials to achieve remote-controlled and sustained insulin release from the engineered pancreatic β cells. The prepared nanocomposite, termed TCN, is composed of defect-rich titanium oxide quantum dots with ultrasound-electric conversion effect and fibrous carbon substrate. In vitro experiments demonstrate that the TCN enables cell surface engineering through carbon substrate adsorption onto pancreatic β cells without chemical modification, while the TiO<sub>x</sub> quantum dots of TCN enable effective ultrasound-responsive electrical stimulation to activate insulin release from β cells. Furthermore, we demonstrate that the subcutaneous implantation of TCN-engineered β cell complexes in type 1 and type 2 diabetic mice enables the restoration of normoglycemia by ultrasound stimulation, establishing a nanomaterials-enabled controlled cell therapy paradigm for diabetes.</p>\",\"PeriodicalId\":125,\"journal\":{\"name\":\"Angewandte Chemie International Edition\",\"volume\":\"64 37\",\"pages\":\"\"},\"PeriodicalIF\":16.9000,\"publicationDate\":\"2025-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Angewandte Chemie International Edition\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/anie.202502780\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/anie.202502780","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

基于工程细胞的治疗是治疗顽固性疾病的一种新兴方法,其中细胞行为的远程控制需要强大的物理输入-传感-反应系统。纳米材料是实现细胞无线远程控制的有前途的工具。为了实现这一目标,纳米材料在靶细胞上的精确锚定对于纳米材料工程细胞防止诸如内吞作用和扩散等不良影响至关重要。在此,我们描述了一种使用纳米材料的一般细胞工程策略,以实现从工程胰腺β细胞中远程控制和持续释放胰岛素。所制备的纳米复合材料称为TCN,由具有超声电转换效应的富缺陷氧化钛量子点和纤维碳衬底组成。体外实验表明,TCN通过碳底物吸附到胰腺β细胞上,无需化学修饰,可以实现细胞表面工程,而TCN的TiOx量子点可以有效地进行超声响应性电刺激,激活β细胞释放胰岛素。此外,我们证明了TCN工程β细胞复合物在1型和2型糖尿病小鼠的皮下植入能够通过超声刺激恢复正常血糖,从而建立了纳米材料激活的糖尿病控制细胞治疗范式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Sonoelectric Nanonet-Activated Extracellular Electron Transfer for Wireless Non-Genetic Stimulation of Pancreatic β Cells

Sonoelectric Nanonet-Activated Extracellular Electron Transfer for Wireless Non-Genetic Stimulation of Pancreatic β Cells

Engineered cell-based therapy is an emerging approach for treating intractable diseases, in which the remote control of cellular behavior necessitates robust physical input-sensing-response systems. Nanomaterials represent promising tools to enable wireless remote control of cells. To achieve this, the precise anchoring of nanomaterials to target cells is crucial for nanomaterial-engineered cells to prevent undesired effects such as endocytosis and diffusion. Herein, we describe a general cell engineering strategy using nanomaterials to achieve remote-controlled and sustained insulin release from the engineered pancreatic β cells. The prepared nanocomposite, termed TCN, is composed of defect-rich titanium oxide quantum dots with ultrasound-electric conversion effect and fibrous carbon substrate. In vitro experiments demonstrate that the TCN enables cell surface engineering through carbon substrate adsorption onto pancreatic β cells without chemical modification, while the TiOx quantum dots of TCN enable effective ultrasound-responsive electrical stimulation to activate insulin release from β cells. Furthermore, we demonstrate that the subcutaneous implantation of TCN-engineered β cell complexes in type 1 and type 2 diabetic mice enables the restoration of normoglycemia by ultrasound stimulation, establishing a nanomaterials-enabled controlled cell therapy paradigm for diabetes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
26.60
自引率
6.60%
发文量
3549
审稿时长
1.5 months
期刊介绍: Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信