酿酒酵母抗氧化应激工程的机制与策略。

Taotao Feng, Hongwei Yu and Lidan Ye*, 
{"title":"酿酒酵母抗氧化应激工程的机制与策略。","authors":"Taotao Feng,&nbsp;Hongwei Yu and Lidan Ye*,&nbsp;","doi":"10.1021/cbe.5c00021","DOIUrl":null,"url":null,"abstract":"<p >Oxidative stress, driven by the accumulation of reactive oxygen species (ROS), poses a significant challenge to the productivity and robustness of <i>Saccharomyces cerevisiae</i> in industrial applications. This review provides an overview of oxidative stress mechanisms, focusing on transcription factors (Yap1p, Skn7p, Msn2/4p) and their regulation through different stress signaling pathways such as HOG, CWI, TOR, and cAMP/PKA. Advanced strategies for enhancing oxidative stress resistance are discussed, including antioxidant enzyme overexpression, redox cofactor optimization, transcription factor modulation, and promoter engineering. Emerging tools like omics-guided gene discovery, biosensor-based feedback regulation, and machine learning-driven optimization are highlighted as promising approaches for constructing robust yeast cell factories. These insights pave the way for intelligent strain design to improve industrial performance under oxidative stress conditions.</p>","PeriodicalId":100230,"journal":{"name":"Chem & Bio Engineering","volume":"2 7","pages":"409–422"},"PeriodicalIF":0.0000,"publicationDate":"2025-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12301939/pdf/","citationCount":"0","resultStr":"{\"title\":\"Mechanisms and Strategies for Engineering Oxidative Stress Resistance in Saccharomyces cerevisiae\",\"authors\":\"Taotao Feng,&nbsp;Hongwei Yu and Lidan Ye*,&nbsp;\",\"doi\":\"10.1021/cbe.5c00021\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Oxidative stress, driven by the accumulation of reactive oxygen species (ROS), poses a significant challenge to the productivity and robustness of <i>Saccharomyces cerevisiae</i> in industrial applications. This review provides an overview of oxidative stress mechanisms, focusing on transcription factors (Yap1p, Skn7p, Msn2/4p) and their regulation through different stress signaling pathways such as HOG, CWI, TOR, and cAMP/PKA. Advanced strategies for enhancing oxidative stress resistance are discussed, including antioxidant enzyme overexpression, redox cofactor optimization, transcription factor modulation, and promoter engineering. Emerging tools like omics-guided gene discovery, biosensor-based feedback regulation, and machine learning-driven optimization are highlighted as promising approaches for constructing robust yeast cell factories. These insights pave the way for intelligent strain design to improve industrial performance under oxidative stress conditions.</p>\",\"PeriodicalId\":100230,\"journal\":{\"name\":\"Chem & Bio Engineering\",\"volume\":\"2 7\",\"pages\":\"409–422\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-05-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12301939/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chem & Bio Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/cbe.5c00021\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chem & Bio Engineering","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/cbe.5c00021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

由活性氧(ROS)积累驱动的氧化应激对酿酒酵母在工业应用中的生产力和稳健性提出了重大挑战。本文综述了氧化应激机制,重点介绍了转录因子(Yap1p, Skn7p, Msn2/4p)及其通过不同应激信号通路(如HOG, CWI, TOR和cAMP/PKA)的调控。讨论了提高氧化应激抗性的先进策略,包括抗氧化酶过表达、氧化还原辅助因子优化、转录因子调节和启动子工程。新兴工具,如组学引导的基因发现、基于生物传感器的反馈调节和机器学习驱动的优化,被强调为构建健壮的酵母细胞工厂的有前途的方法。这些见解为智能应变设计铺平了道路,以提高氧化应激条件下的工业性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Mechanisms and Strategies for Engineering Oxidative Stress Resistance in Saccharomyces cerevisiae

Oxidative stress, driven by the accumulation of reactive oxygen species (ROS), poses a significant challenge to the productivity and robustness of Saccharomyces cerevisiae in industrial applications. This review provides an overview of oxidative stress mechanisms, focusing on transcription factors (Yap1p, Skn7p, Msn2/4p) and their regulation through different stress signaling pathways such as HOG, CWI, TOR, and cAMP/PKA. Advanced strategies for enhancing oxidative stress resistance are discussed, including antioxidant enzyme overexpression, redox cofactor optimization, transcription factor modulation, and promoter engineering. Emerging tools like omics-guided gene discovery, biosensor-based feedback regulation, and machine learning-driven optimization are highlighted as promising approaches for constructing robust yeast cell factories. These insights pave the way for intelligent strain design to improve industrial performance under oxidative stress conditions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信