Hyunwoong Kim, Seongbeom Park, Sang Won Seo, Duk L Na, Hyemin Jang, Jun Pyo Kim, Hee Jin Kim, Sung Hoon Kang, Kichang Kwak
{"title":"一种新的基于深度学习的常规临床MRI扫描脑年龄预测框架。","authors":"Hyunwoong Kim, Seongbeom Park, Sang Won Seo, Duk L Na, Hyemin Jang, Jun Pyo Kim, Hee Jin Kim, Sung Hoon Kang, Kichang Kwak","doi":"10.1038/s41514-025-00260-x","DOIUrl":null,"url":null,"abstract":"<p><p>Physiological brain aging is associated with cognitive impairment and neuroanatomical changes. Brain age prediction of routine clinical 2D brain MRI scans were understudied and often unsuccessful. We developed a novel brain age prediction framework for clinical 2D T1-weighted MRI scans using a deep learning-based model trained with research grade 3D MRI scans mostly from publicly available datasets (N = 8681; age = 51.76 ± 21.74). Our model showed accurate and fast brain age prediction on clinical 2D MRI scans from cognitively unimpaired (CU) subjects (N = 175) with MAE of 2.73 years after age bias correction (Pearson's r = 0.918). Brain age gap of Alzheimer's disease (AD) subjects was significantly greater than CU subjects (p < 0.001) and increase in brain age gap was associated with disease progression in both AD (p < 0.05) and Parkinson's disease (p < 0.01). Our framework can be extended to other MRI modalities and potentially applied to routine clinical examinations, enabling early detection of structural anomalies and improve patient outcome.</p>","PeriodicalId":94160,"journal":{"name":"npj aging","volume":"11 1","pages":"70"},"PeriodicalIF":6.0000,"publicationDate":"2025-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12307806/pdf/","citationCount":"0","resultStr":"{\"title\":\"A novel deep learning-based brain age prediction framework for routine clinical MRI scans.\",\"authors\":\"Hyunwoong Kim, Seongbeom Park, Sang Won Seo, Duk L Na, Hyemin Jang, Jun Pyo Kim, Hee Jin Kim, Sung Hoon Kang, Kichang Kwak\",\"doi\":\"10.1038/s41514-025-00260-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Physiological brain aging is associated with cognitive impairment and neuroanatomical changes. Brain age prediction of routine clinical 2D brain MRI scans were understudied and often unsuccessful. We developed a novel brain age prediction framework for clinical 2D T1-weighted MRI scans using a deep learning-based model trained with research grade 3D MRI scans mostly from publicly available datasets (N = 8681; age = 51.76 ± 21.74). Our model showed accurate and fast brain age prediction on clinical 2D MRI scans from cognitively unimpaired (CU) subjects (N = 175) with MAE of 2.73 years after age bias correction (Pearson's r = 0.918). Brain age gap of Alzheimer's disease (AD) subjects was significantly greater than CU subjects (p < 0.001) and increase in brain age gap was associated with disease progression in both AD (p < 0.05) and Parkinson's disease (p < 0.01). Our framework can be extended to other MRI modalities and potentially applied to routine clinical examinations, enabling early detection of structural anomalies and improve patient outcome.</p>\",\"PeriodicalId\":94160,\"journal\":{\"name\":\"npj aging\",\"volume\":\"11 1\",\"pages\":\"70\"},\"PeriodicalIF\":6.0000,\"publicationDate\":\"2025-07-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12307806/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"npj aging\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1038/s41514-025-00260-x\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GERIATRICS & GERONTOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj aging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1038/s41514-025-00260-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GERIATRICS & GERONTOLOGY","Score":null,"Total":0}
A novel deep learning-based brain age prediction framework for routine clinical MRI scans.
Physiological brain aging is associated with cognitive impairment and neuroanatomical changes. Brain age prediction of routine clinical 2D brain MRI scans were understudied and often unsuccessful. We developed a novel brain age prediction framework for clinical 2D T1-weighted MRI scans using a deep learning-based model trained with research grade 3D MRI scans mostly from publicly available datasets (N = 8681; age = 51.76 ± 21.74). Our model showed accurate and fast brain age prediction on clinical 2D MRI scans from cognitively unimpaired (CU) subjects (N = 175) with MAE of 2.73 years after age bias correction (Pearson's r = 0.918). Brain age gap of Alzheimer's disease (AD) subjects was significantly greater than CU subjects (p < 0.001) and increase in brain age gap was associated with disease progression in both AD (p < 0.05) and Parkinson's disease (p < 0.01). Our framework can be extended to other MRI modalities and potentially applied to routine clinical examinations, enabling early detection of structural anomalies and improve patient outcome.