Hina Shahid, Muhammad Ibrahim, Wadi B Alonazi, Zhanyou Chi
{"title":"利用转录组学数据和综合生物信息学分析解读微藻生物活性化合物的分子机制。","authors":"Hina Shahid, Muhammad Ibrahim, Wadi B Alonazi, Zhanyou Chi","doi":"10.2174/0115734099389525250704104200","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Microalgae, with their high photosynthetic efficiency and sustainability, hold promise to produce bioactive compounds, chemicals, cosmetics, and biofuels. This study aims to understand the molecular mechanisms of bioactive compounds from microalgae using integrative bioinformatics approaches to identify their potential therapeutic applications.</p><p><strong>Methods: </strong>Gene expression profiles from the GSE113144 and GSE115827 datasets were retrieved from the GEO database using keywords such as liver disease, microalgae, and bioactive compounds. Different expressed genes (DEGs) were identified using the GEO2R tool. Subsequently, a PPI network was constructed to identify hub genes and key regulatory elements. The findings were further cross-validated using a range of bioinformatics tools, databases, and literature to explore their potential applications in drug development, nutraceuticals, and disease modulation.</p><p><strong>Results: </strong>Following oxo-fatty acid treatment, 2051 differentially expressed genes (DEGs) were identified, while 399 DEGs were detected after sea spray aerosol treatment, with 39 genes shared between the two treatments. These DEGs were primarily enriched in immune and metabolic processes. Protein-protein interaction analysis revealed ten key hub genes: PBK, CENPA, ASPM, DLGAP5, DEPDC1, SPC25, CDCA3, HJURP, ERCC6L, and KIF18B, which are involved in immune and metabolic responses. Functional enrichment highlighted roles in cholesterol and fatty-acyl-CoA binding, peptidoglycan recognition, metal ion binding, and protease activity. Notably, PBK and CDCA3 are associated with approved drugs, suggesting potential for therapeutic repurposing.</p><p><strong>Discussion: </strong>The molecular functions enriched among hub genes, such as cholesterol binding, fatty-acyl-CoA binding, peptidoglycan receptor activity, and metal ion binding, suggest actionable pathways that could be pharmacologically modulated. These targets are highly relevant to diseases such as NAFLD and chronic inflammation. The identification of druggable hub genes and enriched immune-metabolic functions provides a foundation for further preclinical and translational research.</p><p><strong>Conclusion: </strong>This study offers valuable insights into the molecular mechanisms underlying human immune and metabolic responses to sea spray aerosols and oxo-fatty acids, identifying cellular pathways and processes that are often regulated in human immune and metabolic responses to various microalgae. Overall, this study enhances our understanding of the potential therapeutic applications of microalgae-derived bioactive compounds, offering potential breakthroughs in drug discovery and nutraceutical development.</p>","PeriodicalId":93961,"journal":{"name":"Current computer-aided drug design","volume":" ","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2025-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Decoding the Molecular Mechanism of Bioactive Compounds Derived from Microalgae via Transcriptomics Data and Integrative Bioinformatics Analysis.\",\"authors\":\"Hina Shahid, Muhammad Ibrahim, Wadi B Alonazi, Zhanyou Chi\",\"doi\":\"10.2174/0115734099389525250704104200\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Introduction: </strong>Microalgae, with their high photosynthetic efficiency and sustainability, hold promise to produce bioactive compounds, chemicals, cosmetics, and biofuels. This study aims to understand the molecular mechanisms of bioactive compounds from microalgae using integrative bioinformatics approaches to identify their potential therapeutic applications.</p><p><strong>Methods: </strong>Gene expression profiles from the GSE113144 and GSE115827 datasets were retrieved from the GEO database using keywords such as liver disease, microalgae, and bioactive compounds. Different expressed genes (DEGs) were identified using the GEO2R tool. Subsequently, a PPI network was constructed to identify hub genes and key regulatory elements. The findings were further cross-validated using a range of bioinformatics tools, databases, and literature to explore their potential applications in drug development, nutraceuticals, and disease modulation.</p><p><strong>Results: </strong>Following oxo-fatty acid treatment, 2051 differentially expressed genes (DEGs) were identified, while 399 DEGs were detected after sea spray aerosol treatment, with 39 genes shared between the two treatments. These DEGs were primarily enriched in immune and metabolic processes. Protein-protein interaction analysis revealed ten key hub genes: PBK, CENPA, ASPM, DLGAP5, DEPDC1, SPC25, CDCA3, HJURP, ERCC6L, and KIF18B, which are involved in immune and metabolic responses. Functional enrichment highlighted roles in cholesterol and fatty-acyl-CoA binding, peptidoglycan recognition, metal ion binding, and protease activity. Notably, PBK and CDCA3 are associated with approved drugs, suggesting potential for therapeutic repurposing.</p><p><strong>Discussion: </strong>The molecular functions enriched among hub genes, such as cholesterol binding, fatty-acyl-CoA binding, peptidoglycan receptor activity, and metal ion binding, suggest actionable pathways that could be pharmacologically modulated. These targets are highly relevant to diseases such as NAFLD and chronic inflammation. The identification of druggable hub genes and enriched immune-metabolic functions provides a foundation for further preclinical and translational research.</p><p><strong>Conclusion: </strong>This study offers valuable insights into the molecular mechanisms underlying human immune and metabolic responses to sea spray aerosols and oxo-fatty acids, identifying cellular pathways and processes that are often regulated in human immune and metabolic responses to various microalgae. Overall, this study enhances our understanding of the potential therapeutic applications of microalgae-derived bioactive compounds, offering potential breakthroughs in drug discovery and nutraceutical development.</p>\",\"PeriodicalId\":93961,\"journal\":{\"name\":\"Current computer-aided drug design\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2025-07-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current computer-aided drug design\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2174/0115734099389525250704104200\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current computer-aided drug design","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2174/0115734099389525250704104200","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Decoding the Molecular Mechanism of Bioactive Compounds Derived from Microalgae via Transcriptomics Data and Integrative Bioinformatics Analysis.
Introduction: Microalgae, with their high photosynthetic efficiency and sustainability, hold promise to produce bioactive compounds, chemicals, cosmetics, and biofuels. This study aims to understand the molecular mechanisms of bioactive compounds from microalgae using integrative bioinformatics approaches to identify their potential therapeutic applications.
Methods: Gene expression profiles from the GSE113144 and GSE115827 datasets were retrieved from the GEO database using keywords such as liver disease, microalgae, and bioactive compounds. Different expressed genes (DEGs) were identified using the GEO2R tool. Subsequently, a PPI network was constructed to identify hub genes and key regulatory elements. The findings were further cross-validated using a range of bioinformatics tools, databases, and literature to explore their potential applications in drug development, nutraceuticals, and disease modulation.
Results: Following oxo-fatty acid treatment, 2051 differentially expressed genes (DEGs) were identified, while 399 DEGs were detected after sea spray aerosol treatment, with 39 genes shared between the two treatments. These DEGs were primarily enriched in immune and metabolic processes. Protein-protein interaction analysis revealed ten key hub genes: PBK, CENPA, ASPM, DLGAP5, DEPDC1, SPC25, CDCA3, HJURP, ERCC6L, and KIF18B, which are involved in immune and metabolic responses. Functional enrichment highlighted roles in cholesterol and fatty-acyl-CoA binding, peptidoglycan recognition, metal ion binding, and protease activity. Notably, PBK and CDCA3 are associated with approved drugs, suggesting potential for therapeutic repurposing.
Discussion: The molecular functions enriched among hub genes, such as cholesterol binding, fatty-acyl-CoA binding, peptidoglycan receptor activity, and metal ion binding, suggest actionable pathways that could be pharmacologically modulated. These targets are highly relevant to diseases such as NAFLD and chronic inflammation. The identification of druggable hub genes and enriched immune-metabolic functions provides a foundation for further preclinical and translational research.
Conclusion: This study offers valuable insights into the molecular mechanisms underlying human immune and metabolic responses to sea spray aerosols and oxo-fatty acids, identifying cellular pathways and processes that are often regulated in human immune and metabolic responses to various microalgae. Overall, this study enhances our understanding of the potential therapeutic applications of microalgae-derived bioactive compounds, offering potential breakthroughs in drug discovery and nutraceutical development.