经皮脊髓随机噪声刺激增强人类运动记忆巩固和皮质脊髓传递。

IF 4.4 2区 医学 Q1 NEUROSCIENCES
Mitsuhiro Nito, Daisuke Kudo, Tadaki Koseki, Ippei Nojima, Shigeo Tanabe, Tomofumi Yamaguchi
{"title":"经皮脊髓随机噪声刺激增强人类运动记忆巩固和皮质脊髓传递。","authors":"Mitsuhiro Nito, Daisuke Kudo, Tadaki Koseki, Ippei Nojima, Shigeo Tanabe, Tomofumi Yamaguchi","doi":"10.1113/JP287804","DOIUrl":null,"url":null,"abstract":"<p><p>Stochastic resonance sensory input modulates the central nervous system's excitability, thereby possibly influencing motor skill learning and retention. We investigated the effects of transcutaneous spinal random noise stimulation (tsRNS) at the cervical level on motor skill learning and corticospinal transmission in healthy humans. Participants performed a 20 min visuomotor tracking training task requiring rapid shifts in pinch force, with motor performance tests conducted before, immediately after, 1 day after and 7 days after the training to assess motor skill learning and retention. During the task, participants received real or sham tsRNS for 20 and 0.5 min, respectively. Motor performance improved equally in both groups immediately after training; however, the real tsRNS group showed a higher performance than the sham group at 1 and 7 days post-training. Beta-band corticomuscular coherence increased immediately after training in both groups, and higher performance on 1 day after the training was positively correlated with a greater change in corticomuscular coherence. To elucidate the mechanisms contributing to the enhanced motor memory retention induced by tsRNS, we investigated its effects on cortical and spinal excitability. We observed increased intracortical facilitation and somatosensory evoked potential amplitude following tsRNS; however, the efficacy of cortico-motoneuronal synaptic transmissions and the excitability of spinal motoneurons remained unchanged. Collectively, tsRNS can enhance the corticospinal drive to spinal motoneurons indirectly by increasing the ascending afferent input strength and cortical excitability via the augmented activity of facilitatory interneurons, resulting in improved motor memory retention. Thus, tsRNS may have important clinical applications for rehabilitation after central nervous system lesions. KEY POINTS: Stochastic resonance sensory input modulates the excitability of the central nervous system and may influence motor skill learning and motor memory retention. Transcutaneous spinal random noise stimulation (tsRNS) applied at the cervical level can enhance motor skill learning and motor memory retention in healthy humans. tsRNS can increase the ascending afferent input to the cortex and the excitability of the intracortical circuits rather than directly modulating the descending motor output, resulting in improved motor memory retention. These findings suggest that tsRNS is an effective strategy for promoting functional motor recovery of the upper limb after the development of central nervous system lesions.</p>","PeriodicalId":50088,"journal":{"name":"Journal of Physiology-London","volume":" ","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2025-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Transcutaneous spinal random noise stimulation enhances motor memory consolidation and corticospinal transmission in humans.\",\"authors\":\"Mitsuhiro Nito, Daisuke Kudo, Tadaki Koseki, Ippei Nojima, Shigeo Tanabe, Tomofumi Yamaguchi\",\"doi\":\"10.1113/JP287804\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Stochastic resonance sensory input modulates the central nervous system's excitability, thereby possibly influencing motor skill learning and retention. We investigated the effects of transcutaneous spinal random noise stimulation (tsRNS) at the cervical level on motor skill learning and corticospinal transmission in healthy humans. Participants performed a 20 min visuomotor tracking training task requiring rapid shifts in pinch force, with motor performance tests conducted before, immediately after, 1 day after and 7 days after the training to assess motor skill learning and retention. During the task, participants received real or sham tsRNS for 20 and 0.5 min, respectively. Motor performance improved equally in both groups immediately after training; however, the real tsRNS group showed a higher performance than the sham group at 1 and 7 days post-training. Beta-band corticomuscular coherence increased immediately after training in both groups, and higher performance on 1 day after the training was positively correlated with a greater change in corticomuscular coherence. To elucidate the mechanisms contributing to the enhanced motor memory retention induced by tsRNS, we investigated its effects on cortical and spinal excitability. We observed increased intracortical facilitation and somatosensory evoked potential amplitude following tsRNS; however, the efficacy of cortico-motoneuronal synaptic transmissions and the excitability of spinal motoneurons remained unchanged. Collectively, tsRNS can enhance the corticospinal drive to spinal motoneurons indirectly by increasing the ascending afferent input strength and cortical excitability via the augmented activity of facilitatory interneurons, resulting in improved motor memory retention. Thus, tsRNS may have important clinical applications for rehabilitation after central nervous system lesions. KEY POINTS: Stochastic resonance sensory input modulates the excitability of the central nervous system and may influence motor skill learning and motor memory retention. Transcutaneous spinal random noise stimulation (tsRNS) applied at the cervical level can enhance motor skill learning and motor memory retention in healthy humans. tsRNS can increase the ascending afferent input to the cortex and the excitability of the intracortical circuits rather than directly modulating the descending motor output, resulting in improved motor memory retention. These findings suggest that tsRNS is an effective strategy for promoting functional motor recovery of the upper limb after the development of central nervous system lesions.</p>\",\"PeriodicalId\":50088,\"journal\":{\"name\":\"Journal of Physiology-London\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2025-07-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Physiology-London\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1113/JP287804\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physiology-London","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1113/JP287804","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

随机共振感觉输入调节中枢神经系统的兴奋性,从而可能影响运动技能的学习和保留。我们研究了颈椎水平经皮脊髓随机噪声刺激(tsRNS)对健康人运动技能学习和皮质脊髓传递的影响。参与者进行了20分钟的视觉运动跟踪训练任务,要求快速改变夹紧力,并在训练前、训练后、训练后1天和训练后7天进行了运动性能测试,以评估运动技能的学习和保留。在任务期间,参与者分别接受20分钟和0.5分钟的真实或虚假tsRNS。训练结束后,两组的运动表现都得到了同样的改善;然而,真实tsRNS组在训练后1天和7天的表现高于假组。两组的β带皮质肌相干性在训练后立即增加,训练后第1天的高表现与皮质肌相干性的大变化呈正相关。为了阐明tsRNS增强运动记忆保留的机制,我们研究了tsRNS对皮层和脊髓兴奋性的影响。我们观察到tsRNS后皮质内促进和体感觉诱发电位振幅增加;然而,皮质-运动神经元突触传递的有效性和脊髓运动神经元的兴奋性保持不变。综上所述,tsRNS通过促进中间神经元的活动增强传入输入强度和皮层兴奋性,间接增强脊髓皮质对脊髓运动神经元的驱动,从而改善运动记忆保留。因此,tsRNS在中枢神经系统病变后的康复中可能具有重要的临床应用价值。重点:随机共振感觉输入调节中枢神经系统的兴奋性,可能影响运动技能的学习和运动记忆的保持。经皮脊髓随机噪声刺激(tsRNS)应用于颈椎水平可以增强健康人的运动技能学习和运动记忆保留。tsRNS不是直接调节下行运动输出,而是增加皮层上行传入输入和皮层内回路的兴奋性,从而改善运动记忆保留。这些结果提示tsRNS是促进中枢神经系统病变后上肢功能运动恢复的有效策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Transcutaneous spinal random noise stimulation enhances motor memory consolidation and corticospinal transmission in humans.

Stochastic resonance sensory input modulates the central nervous system's excitability, thereby possibly influencing motor skill learning and retention. We investigated the effects of transcutaneous spinal random noise stimulation (tsRNS) at the cervical level on motor skill learning and corticospinal transmission in healthy humans. Participants performed a 20 min visuomotor tracking training task requiring rapid shifts in pinch force, with motor performance tests conducted before, immediately after, 1 day after and 7 days after the training to assess motor skill learning and retention. During the task, participants received real or sham tsRNS for 20 and 0.5 min, respectively. Motor performance improved equally in both groups immediately after training; however, the real tsRNS group showed a higher performance than the sham group at 1 and 7 days post-training. Beta-band corticomuscular coherence increased immediately after training in both groups, and higher performance on 1 day after the training was positively correlated with a greater change in corticomuscular coherence. To elucidate the mechanisms contributing to the enhanced motor memory retention induced by tsRNS, we investigated its effects on cortical and spinal excitability. We observed increased intracortical facilitation and somatosensory evoked potential amplitude following tsRNS; however, the efficacy of cortico-motoneuronal synaptic transmissions and the excitability of spinal motoneurons remained unchanged. Collectively, tsRNS can enhance the corticospinal drive to spinal motoneurons indirectly by increasing the ascending afferent input strength and cortical excitability via the augmented activity of facilitatory interneurons, resulting in improved motor memory retention. Thus, tsRNS may have important clinical applications for rehabilitation after central nervous system lesions. KEY POINTS: Stochastic resonance sensory input modulates the excitability of the central nervous system and may influence motor skill learning and motor memory retention. Transcutaneous spinal random noise stimulation (tsRNS) applied at the cervical level can enhance motor skill learning and motor memory retention in healthy humans. tsRNS can increase the ascending afferent input to the cortex and the excitability of the intracortical circuits rather than directly modulating the descending motor output, resulting in improved motor memory retention. These findings suggest that tsRNS is an effective strategy for promoting functional motor recovery of the upper limb after the development of central nervous system lesions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Physiology-London
Journal of Physiology-London 医学-神经科学
CiteScore
9.70
自引率
7.30%
发文量
817
审稿时长
2 months
期刊介绍: The Journal of Physiology publishes full-length original Research Papers and Techniques for Physiology, which are short papers aimed at disseminating new techniques for physiological research. Articles solicited by the Editorial Board include Perspectives, Symposium Reports and Topical Reviews, which highlight areas of special physiological interest. CrossTalk articles are short editorial-style invited articles framing a debate between experts in the field on controversial topics. Letters to the Editor and Journal Club articles are also published. All categories of papers are subjected to peer reivew. The Journal of Physiology welcomes submitted research papers in all areas of physiology. Authors should present original work that illustrates new physiological principles or mechanisms. Papers on work at the molecular level, at the level of the cell membrane, single cells, tissues or organs and on systems physiology are all acceptable. Theoretical papers and papers that use computational models to further our understanding of physiological processes will be considered if based on experimentally derived data and if the hypothesis advanced is directly amenable to experimental testing. While emphasis is on human and mammalian physiology, work on lower vertebrate or invertebrate preparations may be suitable if it furthers the understanding of the functioning of other organisms including mammals.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信