太阳能物联网设备的能量感知占空比管理。

IF 3.5 3区 综合性期刊 Q2 CHEMISTRY, ANALYTICAL
Sensors Pub Date : 2025-07-19 DOI:10.3390/s25144500
Michael Gerndt, Mustafa Ispir, Isaac Nunez, Shajulin Benedict
{"title":"太阳能物联网设备的能量感知占空比管理。","authors":"Michael Gerndt, Mustafa Ispir, Isaac Nunez, Shajulin Benedict","doi":"10.3390/s25144500","DOIUrl":null,"url":null,"abstract":"<p><p>IoT devices with sensors and actuators are frequently deployed in environments without access to the power grid. These devices are battery powered and might make use of energy harvesting if battery lifetime is too limited. This article focuses on automatically adapting the duty cycle frequency to the predicted available solar energy so that a continuous operation of IoT applications is guaranteed. The implementation is based on a low-cost solar control board that is integrated with the Serverless IoT Framework (SIF), which provides an event-based programming paradigm for microcontroller-based IoT devices. The paper presents a case study where the IoT device sleep time is pro-actively adapted to a predicted sequence of cloudy days to guarantee continuous operation.</p>","PeriodicalId":21698,"journal":{"name":"Sensors","volume":"25 14","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12300125/pdf/","citationCount":"0","resultStr":"{\"title\":\"Energy-Aware Duty Cycle Management for Solar-Powered IoT Devices.\",\"authors\":\"Michael Gerndt, Mustafa Ispir, Isaac Nunez, Shajulin Benedict\",\"doi\":\"10.3390/s25144500\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>IoT devices with sensors and actuators are frequently deployed in environments without access to the power grid. These devices are battery powered and might make use of energy harvesting if battery lifetime is too limited. This article focuses on automatically adapting the duty cycle frequency to the predicted available solar energy so that a continuous operation of IoT applications is guaranteed. The implementation is based on a low-cost solar control board that is integrated with the Serverless IoT Framework (SIF), which provides an event-based programming paradigm for microcontroller-based IoT devices. The paper presents a case study where the IoT device sleep time is pro-actively adapted to a predicted sequence of cloudy days to guarantee continuous operation.</p>\",\"PeriodicalId\":21698,\"journal\":{\"name\":\"Sensors\",\"volume\":\"25 14\",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-07-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12300125/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sensors\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.3390/s25144500\",\"RegionNum\":3,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensors","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.3390/s25144500","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

摘要

带有传感器和执行器的物联网设备经常部署在无法接入电网的环境中。这些设备是电池供电的,如果电池寿命太短,可能会利用能量收集。本文的重点是自动调整占空比频率以预测可用太阳能,从而保证物联网应用的连续运行。该实现基于与无服务器物联网框架(SIF)集成的低成本太阳能控制板,该框架为基于微控制器的物联网设备提供了基于事件的编程范例。本文介绍了一个案例研究,其中物联网设备睡眠时间主动适应预测的阴天序列,以保证连续运行。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Energy-Aware Duty Cycle Management for Solar-Powered IoT Devices.

IoT devices with sensors and actuators are frequently deployed in environments without access to the power grid. These devices are battery powered and might make use of energy harvesting if battery lifetime is too limited. This article focuses on automatically adapting the duty cycle frequency to the predicted available solar energy so that a continuous operation of IoT applications is guaranteed. The implementation is based on a low-cost solar control board that is integrated with the Serverless IoT Framework (SIF), which provides an event-based programming paradigm for microcontroller-based IoT devices. The paper presents a case study where the IoT device sleep time is pro-actively adapted to a predicted sequence of cloudy days to guarantee continuous operation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Sensors
Sensors 工程技术-电化学
CiteScore
7.30
自引率
12.80%
发文量
8430
审稿时长
1.7 months
期刊介绍: Sensors (ISSN 1424-8220) provides an advanced forum for the science and technology of sensors and biosensors. It publishes reviews (including comprehensive reviews on the complete sensors products), regular research papers and short notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信