{"title":"高寒草地生态系统样地和物种对植物β多样性的贡献","authors":"Jie Li, Xiao Pan Pang, Zheng Gang Guo","doi":"10.1016/j.pld.2025.05.003","DOIUrl":null,"url":null,"abstract":"<p><p>Understanding plant diversity within geographical ranges and identifying key species that drive community variation can provide crucial insights for the management of grasslands. However, the contribution of both local sites and plant species to beta diversity in grassland ecosystems has yet to be accurately assessed. This study applied the ecological uniqueness approach to examine both local contributions to beta diversity (LCBD) and species contributions to beta diversity (SCBD) across six major geographical ranges in alpine grasslands. We found that LCBD was driven by species turnover, with climate, plant communities, and their interactions influencing LCBD across spatial scales. LCBD values were high in areas with low evapotranspiration, high rainfall variability, and low species and functional richness. Precipitation seasonality predicted large-scale LCBD dynamics, while plant community abundance explained local LCBD variation. In addition, we found that SCBD were confined to species with moderate occupancy, although these species contributed less to plant biological traits. Our findings are crucial for understanding how ecological characteristics influence plant beta diversity in grasslands and how it responds to environmental and community factors. In addition, these findings have successfully identified key sites and priority plants for conservation, indicating that using standardized quadrats can support the assessment of the ecological uniqueness in grassland ecosystems. We hope these insights will inform the development of conservation strategies, thereby supporting regional plant diversity and resisting vegetation homogenization.</p>","PeriodicalId":20224,"journal":{"name":"Plant Diversity","volume":"47 4","pages":"633-642"},"PeriodicalIF":6.3000,"publicationDate":"2025-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12302491/pdf/","citationCount":"0","resultStr":"{\"title\":\"Assessing the contributions of site and species to plant beta diversity in alpine grassland ecosystems.\",\"authors\":\"Jie Li, Xiao Pan Pang, Zheng Gang Guo\",\"doi\":\"10.1016/j.pld.2025.05.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Understanding plant diversity within geographical ranges and identifying key species that drive community variation can provide crucial insights for the management of grasslands. However, the contribution of both local sites and plant species to beta diversity in grassland ecosystems has yet to be accurately assessed. This study applied the ecological uniqueness approach to examine both local contributions to beta diversity (LCBD) and species contributions to beta diversity (SCBD) across six major geographical ranges in alpine grasslands. We found that LCBD was driven by species turnover, with climate, plant communities, and their interactions influencing LCBD across spatial scales. LCBD values were high in areas with low evapotranspiration, high rainfall variability, and low species and functional richness. Precipitation seasonality predicted large-scale LCBD dynamics, while plant community abundance explained local LCBD variation. In addition, we found that SCBD were confined to species with moderate occupancy, although these species contributed less to plant biological traits. Our findings are crucial for understanding how ecological characteristics influence plant beta diversity in grasslands and how it responds to environmental and community factors. In addition, these findings have successfully identified key sites and priority plants for conservation, indicating that using standardized quadrats can support the assessment of the ecological uniqueness in grassland ecosystems. We hope these insights will inform the development of conservation strategies, thereby supporting regional plant diversity and resisting vegetation homogenization.</p>\",\"PeriodicalId\":20224,\"journal\":{\"name\":\"Plant Diversity\",\"volume\":\"47 4\",\"pages\":\"633-642\"},\"PeriodicalIF\":6.3000,\"publicationDate\":\"2025-05-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12302491/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plant Diversity\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.pld.2025.05.003\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/7/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Diversity","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.pld.2025.05.003","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/7/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
Assessing the contributions of site and species to plant beta diversity in alpine grassland ecosystems.
Understanding plant diversity within geographical ranges and identifying key species that drive community variation can provide crucial insights for the management of grasslands. However, the contribution of both local sites and plant species to beta diversity in grassland ecosystems has yet to be accurately assessed. This study applied the ecological uniqueness approach to examine both local contributions to beta diversity (LCBD) and species contributions to beta diversity (SCBD) across six major geographical ranges in alpine grasslands. We found that LCBD was driven by species turnover, with climate, plant communities, and their interactions influencing LCBD across spatial scales. LCBD values were high in areas with low evapotranspiration, high rainfall variability, and low species and functional richness. Precipitation seasonality predicted large-scale LCBD dynamics, while plant community abundance explained local LCBD variation. In addition, we found that SCBD were confined to species with moderate occupancy, although these species contributed less to plant biological traits. Our findings are crucial for understanding how ecological characteristics influence plant beta diversity in grasslands and how it responds to environmental and community factors. In addition, these findings have successfully identified key sites and priority plants for conservation, indicating that using standardized quadrats can support the assessment of the ecological uniqueness in grassland ecosystems. We hope these insights will inform the development of conservation strategies, thereby supporting regional plant diversity and resisting vegetation homogenization.
Plant DiversityAgricultural and Biological Sciences-Ecology, Evolution, Behavior and Systematics
CiteScore
8.30
自引率
6.20%
发文量
1863
审稿时长
35 days
期刊介绍:
Plant Diversity (formerly Plant Diversity and Resources) is an international plant science journal that publishes substantial original research and review papers that
advance our understanding of the past and current distribution of plants,
contribute to the development of more phylogenetically accurate taxonomic classifications,
present new findings on or insights into evolutionary processes and mechanisms that are of interest to the community of plant systematic and evolutionary biologists.
While the focus of the journal is on biodiversity, ecology and evolution of East Asian flora, it is not limited to these topics. Applied evolutionary issues, such as climate change and conservation biology, are welcome, especially if they address conceptual problems. Theoretical papers are equally welcome. Preference is given to concise, clearly written papers focusing on precisely framed questions or hypotheses. Papers that are purely descriptive have a low chance of acceptance.
Fields covered by the journal include:
plant systematics and taxonomy-
evolutionary developmental biology-
reproductive biology-
phylo- and biogeography-
evolutionary ecology-
population biology-
conservation biology-
palaeobotany-
molecular evolution-
comparative and evolutionary genomics-
physiology-
biochemistry