Zhi-Qiong Mo, Chao-Nan Fu, Alex D Twyford, Pete M Hollingsworth, Ting Zhang, Jun-Bo Yang, De-Zhu Li, Lian-Ming Gao
{"title":"评估系统基因组学分析中深度基因组略读的效用:以物种丰富的杜鹃花属为例。","authors":"Zhi-Qiong Mo, Chao-Nan Fu, Alex D Twyford, Pete M Hollingsworth, Ting Zhang, Jun-Bo Yang, De-Zhu Li, Lian-Ming Gao","doi":"10.1016/j.pld.2025.04.006","DOIUrl":null,"url":null,"abstract":"<p><p>Deep genome skimming (DGS) has emerged as a promising approach to recover orthologous nuclear genes for large-scale phylogenomic analyses. However, its reliability with low DNA quality and quantity typical of archival specimens, such as herbarium material, remains largely unexplored. We used <i>Rhododendron</i> as a case study to evaluate best practices for DGS in phylogenetic analyses at both deep and shallow scales. We first investigated locus recovery variation with sequencing depth, before evaluating the phylogenetic utility of different sets of loci, including Angiosperms353, target nuclear exons, and extended exon-flanking regions. We found DGS effectively recovered nuclear genes from herbarium specimens, with ∼15× coverage performing similarly to deeper sequencing. The recovery of target exon and flanking regions was improved by using supercontigs as a reference, offering a potential solution to limited sequencing depth. The high-integrity nuclear sequences recovered robust phylogenetic relationships within <i>Rhododendron</i>. Notably, exon-flanking regions showed significant potential for resolving relationships at shallow scales. Genes recovered with taxon-specific references had less missing data than those recovered by Angiosperms353 and generated higher-resolution phylogenetic trees. This study demonstrates the utility of DGS data for obtaining numerous nuclear genes from herbarium specimens for phylogenetic studies, and makes recommendations for best practices regarding sequencing coverage, locus selection, and bioinformatic approaches.</p>","PeriodicalId":20224,"journal":{"name":"Plant Diversity","volume":"47 4","pages":"593-603"},"PeriodicalIF":6.3000,"publicationDate":"2025-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12302500/pdf/","citationCount":"0","resultStr":"{\"title\":\"Evaluating the utility of deep genome skimming for phylogenomic analyses: A case study in the species-rich genus <i>Rhododendron</i>.\",\"authors\":\"Zhi-Qiong Mo, Chao-Nan Fu, Alex D Twyford, Pete M Hollingsworth, Ting Zhang, Jun-Bo Yang, De-Zhu Li, Lian-Ming Gao\",\"doi\":\"10.1016/j.pld.2025.04.006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Deep genome skimming (DGS) has emerged as a promising approach to recover orthologous nuclear genes for large-scale phylogenomic analyses. However, its reliability with low DNA quality and quantity typical of archival specimens, such as herbarium material, remains largely unexplored. We used <i>Rhododendron</i> as a case study to evaluate best practices for DGS in phylogenetic analyses at both deep and shallow scales. We first investigated locus recovery variation with sequencing depth, before evaluating the phylogenetic utility of different sets of loci, including Angiosperms353, target nuclear exons, and extended exon-flanking regions. We found DGS effectively recovered nuclear genes from herbarium specimens, with ∼15× coverage performing similarly to deeper sequencing. The recovery of target exon and flanking regions was improved by using supercontigs as a reference, offering a potential solution to limited sequencing depth. The high-integrity nuclear sequences recovered robust phylogenetic relationships within <i>Rhododendron</i>. Notably, exon-flanking regions showed significant potential for resolving relationships at shallow scales. Genes recovered with taxon-specific references had less missing data than those recovered by Angiosperms353 and generated higher-resolution phylogenetic trees. This study demonstrates the utility of DGS data for obtaining numerous nuclear genes from herbarium specimens for phylogenetic studies, and makes recommendations for best practices regarding sequencing coverage, locus selection, and bioinformatic approaches.</p>\",\"PeriodicalId\":20224,\"journal\":{\"name\":\"Plant Diversity\",\"volume\":\"47 4\",\"pages\":\"593-603\"},\"PeriodicalIF\":6.3000,\"publicationDate\":\"2025-05-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12302500/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plant Diversity\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.pld.2025.04.006\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/7/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Diversity","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.pld.2025.04.006","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/7/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
Evaluating the utility of deep genome skimming for phylogenomic analyses: A case study in the species-rich genus Rhododendron.
Deep genome skimming (DGS) has emerged as a promising approach to recover orthologous nuclear genes for large-scale phylogenomic analyses. However, its reliability with low DNA quality and quantity typical of archival specimens, such as herbarium material, remains largely unexplored. We used Rhododendron as a case study to evaluate best practices for DGS in phylogenetic analyses at both deep and shallow scales. We first investigated locus recovery variation with sequencing depth, before evaluating the phylogenetic utility of different sets of loci, including Angiosperms353, target nuclear exons, and extended exon-flanking regions. We found DGS effectively recovered nuclear genes from herbarium specimens, with ∼15× coverage performing similarly to deeper sequencing. The recovery of target exon and flanking regions was improved by using supercontigs as a reference, offering a potential solution to limited sequencing depth. The high-integrity nuclear sequences recovered robust phylogenetic relationships within Rhododendron. Notably, exon-flanking regions showed significant potential for resolving relationships at shallow scales. Genes recovered with taxon-specific references had less missing data than those recovered by Angiosperms353 and generated higher-resolution phylogenetic trees. This study demonstrates the utility of DGS data for obtaining numerous nuclear genes from herbarium specimens for phylogenetic studies, and makes recommendations for best practices regarding sequencing coverage, locus selection, and bioinformatic approaches.
Plant DiversityAgricultural and Biological Sciences-Ecology, Evolution, Behavior and Systematics
CiteScore
8.30
自引率
6.20%
发文量
1863
审稿时长
35 days
期刊介绍:
Plant Diversity (formerly Plant Diversity and Resources) is an international plant science journal that publishes substantial original research and review papers that
advance our understanding of the past and current distribution of plants,
contribute to the development of more phylogenetically accurate taxonomic classifications,
present new findings on or insights into evolutionary processes and mechanisms that are of interest to the community of plant systematic and evolutionary biologists.
While the focus of the journal is on biodiversity, ecology and evolution of East Asian flora, it is not limited to these topics. Applied evolutionary issues, such as climate change and conservation biology, are welcome, especially if they address conceptual problems. Theoretical papers are equally welcome. Preference is given to concise, clearly written papers focusing on precisely framed questions or hypotheses. Papers that are purely descriptive have a low chance of acceptance.
Fields covered by the journal include:
plant systematics and taxonomy-
evolutionary developmental biology-
reproductive biology-
phylo- and biogeography-
evolutionary ecology-
population biology-
conservation biology-
palaeobotany-
molecular evolution-
comparative and evolutionary genomics-
physiology-
biochemistry