卵巢癌的肠道-阴道微生物群串扰:对早期诊断的意义。

IF 3.3 3区 医学 Q2 MICROBIOLOGY
Hao Lin, Zhen Zeng, Hong Zhang, Yongbin Jia, Jiangmei Pang, Jingjing Chen, Hu Zhang
{"title":"卵巢癌的肠道-阴道微生物群串扰:对早期诊断的意义。","authors":"Hao Lin, Zhen Zeng, Hong Zhang, Yongbin Jia, Jiangmei Pang, Jingjing Chen, Hu Zhang","doi":"10.3390/pathogens14070635","DOIUrl":null,"url":null,"abstract":"<p><p>Ovarian cancer remains a formidable global health burden, characterized by frequent late-stage diagnosis and elevated mortality rates attributable to its elusive pathogenesis and the critical lack of reliable early-detection biomarkers. Emerging investigations into the gut-vaginal microbiome axis have unveiled novel pathogenic mechanisms and potential diagnostic targets in ovarian carcinogenesis. This comprehensive review systematically examines the compositional alterations in and functional interplay between vaginal and intestinal microbial communities in ovarian cancer patients. We elucidate three principal mechanistic pathways through which microbial dysbiosis may drive oncogenesis: (1) estrogen-mediated metabolic reprogramming via β-glucuronidase activity; (2) chronic activation of pro-inflammatory cascades (particularly NF-κB and STAT3 signaling); (3) epigenetic silencing of tumor suppressor genes through DNA methyltransferase modulation. We propose an integrative diagnostic framework synthesizing multi-omics data-incorporating microbial profiles, metabolic signatures, pathway-specific molecular alterations, established clinical biomarkers, and imaging findings-within a multifactorial etiological paradigm. This innovative approach aims to enhance early-detection accuracy through machine learning-enabled multidimensional pattern recognition. By bridging microbial ecology with tumor biology, this review provides novel perspectives for understanding ovarian cancer etiology and advancing precision oncology strategies through microbiome-targeted diagnostic innovations.</p>","PeriodicalId":19758,"journal":{"name":"Pathogens","volume":"14 7","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2025-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12298164/pdf/","citationCount":"0","resultStr":"{\"title\":\"Gut-Vaginal Microbiome Crosstalk in Ovarian Cancer: Implications for Early Diagnosis.\",\"authors\":\"Hao Lin, Zhen Zeng, Hong Zhang, Yongbin Jia, Jiangmei Pang, Jingjing Chen, Hu Zhang\",\"doi\":\"10.3390/pathogens14070635\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Ovarian cancer remains a formidable global health burden, characterized by frequent late-stage diagnosis and elevated mortality rates attributable to its elusive pathogenesis and the critical lack of reliable early-detection biomarkers. Emerging investigations into the gut-vaginal microbiome axis have unveiled novel pathogenic mechanisms and potential diagnostic targets in ovarian carcinogenesis. This comprehensive review systematically examines the compositional alterations in and functional interplay between vaginal and intestinal microbial communities in ovarian cancer patients. We elucidate three principal mechanistic pathways through which microbial dysbiosis may drive oncogenesis: (1) estrogen-mediated metabolic reprogramming via β-glucuronidase activity; (2) chronic activation of pro-inflammatory cascades (particularly NF-κB and STAT3 signaling); (3) epigenetic silencing of tumor suppressor genes through DNA methyltransferase modulation. We propose an integrative diagnostic framework synthesizing multi-omics data-incorporating microbial profiles, metabolic signatures, pathway-specific molecular alterations, established clinical biomarkers, and imaging findings-within a multifactorial etiological paradigm. This innovative approach aims to enhance early-detection accuracy through machine learning-enabled multidimensional pattern recognition. By bridging microbial ecology with tumor biology, this review provides novel perspectives for understanding ovarian cancer etiology and advancing precision oncology strategies through microbiome-targeted diagnostic innovations.</p>\",\"PeriodicalId\":19758,\"journal\":{\"name\":\"Pathogens\",\"volume\":\"14 7\",\"pages\":\"\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2025-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12298164/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pathogens\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.3390/pathogens14070635\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pathogens","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/pathogens14070635","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

卵巢癌仍然是一个巨大的全球健康负担,其特点是频繁的晚期诊断和高死亡率,这是由于其难以捉摸的发病机制和严重缺乏可靠的早期检测生物标志物。对肠道-阴道微生物群轴的新研究揭示了卵巢癌发生的新致病机制和潜在诊断靶点。这篇全面的综述系统地检查了卵巢癌患者阴道和肠道微生物群落的组成改变和功能相互作用。我们阐明了微生物生态失调可能驱动肿瘤发生的三个主要机制途径:(1)通过β-葡萄糖醛酸酶活性介导的雌激素介导的代谢重编程;(2)促炎级联反应的慢性激活(特别是NF-κB和STAT3信号);(3)通过DNA甲基转移酶调控肿瘤抑制基因的表观遗传沉默。我们提出了一个综合诊断框架,综合多组学数据,包括微生物谱、代谢特征、途径特异性分子改变、已建立的临床生物标志物和成像结果,在多因素病因学范式中。这种创新的方法旨在通过机器学习支持的多维模式识别来提高早期检测的准确性。通过将微生物生态学与肿瘤生物学联系起来,本综述为了解卵巢癌病因和通过微生物组靶向诊断创新推进精确肿瘤学策略提供了新的视角。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Gut-Vaginal Microbiome Crosstalk in Ovarian Cancer: Implications for Early Diagnosis.

Ovarian cancer remains a formidable global health burden, characterized by frequent late-stage diagnosis and elevated mortality rates attributable to its elusive pathogenesis and the critical lack of reliable early-detection biomarkers. Emerging investigations into the gut-vaginal microbiome axis have unveiled novel pathogenic mechanisms and potential diagnostic targets in ovarian carcinogenesis. This comprehensive review systematically examines the compositional alterations in and functional interplay between vaginal and intestinal microbial communities in ovarian cancer patients. We elucidate three principal mechanistic pathways through which microbial dysbiosis may drive oncogenesis: (1) estrogen-mediated metabolic reprogramming via β-glucuronidase activity; (2) chronic activation of pro-inflammatory cascades (particularly NF-κB and STAT3 signaling); (3) epigenetic silencing of tumor suppressor genes through DNA methyltransferase modulation. We propose an integrative diagnostic framework synthesizing multi-omics data-incorporating microbial profiles, metabolic signatures, pathway-specific molecular alterations, established clinical biomarkers, and imaging findings-within a multifactorial etiological paradigm. This innovative approach aims to enhance early-detection accuracy through machine learning-enabled multidimensional pattern recognition. By bridging microbial ecology with tumor biology, this review provides novel perspectives for understanding ovarian cancer etiology and advancing precision oncology strategies through microbiome-targeted diagnostic innovations.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Pathogens
Pathogens Medicine-Immunology and Allergy
CiteScore
6.40
自引率
8.10%
发文量
1285
审稿时长
17.75 days
期刊介绍: Pathogens (ISSN 2076-0817) publishes reviews, regular research papers and short notes on all aspects of pathogens and pathogen-host interactions. There is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental and/or methodical details must be provided for research articles.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信