生物3D打印可持续脚手架技术的应用和最新进展。

IF 4.6 2区 化学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Xianyao Li, Jianyu Ren, Yubo Huang, Li Cheng, Zhengbiao Gu
{"title":"生物3D打印可持续脚手架技术的应用和最新进展。","authors":"Xianyao Li, Jianyu Ren, Yubo Huang, Li Cheng, Zhengbiao Gu","doi":"10.3390/molecules30143027","DOIUrl":null,"url":null,"abstract":"<p><p>In recent years, with the rapid advancement of 3D printing technology, its applications have expanded across numerous fields. Notably, the fabrication of scaffolds using 3D printing has emerged as a major research focus. Researchers are investigating the properties of various printing materials and tailoring their uses for specific applications. This article reviews the characteristics and applications of different biomaterials printed by 3D technology, such as gelatin, sodium alginate, and starch, highlighting their contributions to the expanding field of 3D-printed biomaterials. Through the comparison in this review, it can be observed that the starch scaffold not only has a lower price but also can be modified to achieve multifunctionality, better meeting the performance requirements in more fields.</p>","PeriodicalId":19041,"journal":{"name":"Molecules","volume":"30 14","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2025-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12300073/pdf/","citationCount":"0","resultStr":"{\"title\":\"Applications and Recent Advances in 3D Bioprinting Sustainable Scaffolding Techniques.\",\"authors\":\"Xianyao Li, Jianyu Ren, Yubo Huang, Li Cheng, Zhengbiao Gu\",\"doi\":\"10.3390/molecules30143027\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In recent years, with the rapid advancement of 3D printing technology, its applications have expanded across numerous fields. Notably, the fabrication of scaffolds using 3D printing has emerged as a major research focus. Researchers are investigating the properties of various printing materials and tailoring their uses for specific applications. This article reviews the characteristics and applications of different biomaterials printed by 3D technology, such as gelatin, sodium alginate, and starch, highlighting their contributions to the expanding field of 3D-printed biomaterials. Through the comparison in this review, it can be observed that the starch scaffold not only has a lower price but also can be modified to achieve multifunctionality, better meeting the performance requirements in more fields.</p>\",\"PeriodicalId\":19041,\"journal\":{\"name\":\"Molecules\",\"volume\":\"30 14\",\"pages\":\"\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12300073/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecules\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.3390/molecules30143027\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecules","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.3390/molecules30143027","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

近年来,随着3D打印技术的飞速发展,其应用已经扩展到众多领域。值得注意的是,使用3D打印制造支架已经成为一个主要的研究焦点。研究人员正在研究各种印刷材料的特性,并为特定的应用定制它们的用途。本文综述了明胶、海藻酸钠、淀粉等3D打印生物材料的特点和应用,重点介绍了它们对生物材料3D打印领域的贡献。通过本次综述的比较可以看出,淀粉支架不仅价格低廉,而且可以通过改性实现多功能,更好地满足更多领域的性能要求。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Applications and Recent Advances in 3D Bioprinting Sustainable Scaffolding Techniques.

In recent years, with the rapid advancement of 3D printing technology, its applications have expanded across numerous fields. Notably, the fabrication of scaffolds using 3D printing has emerged as a major research focus. Researchers are investigating the properties of various printing materials and tailoring their uses for specific applications. This article reviews the characteristics and applications of different biomaterials printed by 3D technology, such as gelatin, sodium alginate, and starch, highlighting their contributions to the expanding field of 3D-printed biomaterials. Through the comparison in this review, it can be observed that the starch scaffold not only has a lower price but also can be modified to achieve multifunctionality, better meeting the performance requirements in more fields.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Molecules
Molecules 化学-有机化学
CiteScore
7.40
自引率
8.70%
发文量
7524
审稿时长
1.4 months
期刊介绍: Molecules (ISSN 1420-3049, CODEN: MOLEFW) is an open access journal of synthetic organic chemistry and natural product chemistry. All articles are peer-reviewed and published continously upon acceptance. Molecules is published by MDPI, Basel, Switzerland. Our aim is to encourage chemists to publish as much as possible their experimental detail, particularly synthetic procedures and characterization information. There is no restriction on the length of the experimental section. In addition, availability of compound samples is published and considered as important information. Authors are encouraged to register or deposit their chemical samples through the non-profit international organization Molecular Diversity Preservation International (MDPI). Molecules has been launched in 1996 to preserve and exploit molecular diversity of both, chemical information and chemical substances.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信