面向安全等离子体器件的无序双用途银纳米结构的可扩展激光制备。

IF 2.8 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY
Dimitrios Ntemogiannis, Vagelis Karoutsos, Panagiotis Poulopoulos, Dimitris Alexandropoulos
{"title":"面向安全等离子体器件的无序双用途银纳米结构的可扩展激光制备。","authors":"Dimitrios Ntemogiannis, Vagelis Karoutsos, Panagiotis Poulopoulos, Dimitris Alexandropoulos","doi":"10.1088/1361-6528/adf563","DOIUrl":null,"url":null,"abstract":"<p><p>Plasmonic nanoparticles (NPs) are widely utilized in various applications including sensing and imaging due to their strong localized surface plasmon resonances (LSPRs). Recently, plasmonic NP assemblies and configurations have also been explored as physical unclonable functions (PUFs) for security applications, however, many existing PUF designs face challenges such as complex fabrication processes and high costs, which complicate their implementation. This study introduces a scalable and practical approach to fabricate disordered self-assembled silver NPs for use as dual-purpose features in plasmonic devices. These nanostructures could offer multifunctionality by simultaneously serving as a functional plasmonic feature and as a potential PUF, providing an extra security layer in the device configuration. The proposed nanostructuring method could support the large-scale production of plasmonic nanostructures with desirable LSPR characteristics, essential for diverse plasmonic applications, while their structural uniqueness enables their potential exploitation as unclonable PUF fingerprints. In this work, disordered silver NPs were grown via laser annealing of silver ultrathin films with thicknesses ranging from 12.5 to 15 nm. Ultraviolet-visible spectroscopy and atomic force microscopy revealed high-intensity LSPRs and unique nanopatterns, demonstrating their potential multifunctionality.</p>","PeriodicalId":19035,"journal":{"name":"Nanotechnology","volume":" ","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Scalable laser fabrication of disordered dual-purpose silver nanostructures towards secure plasmonic devices.\",\"authors\":\"Dimitrios Ntemogiannis, Vagelis Karoutsos, Panagiotis Poulopoulos, Dimitris Alexandropoulos\",\"doi\":\"10.1088/1361-6528/adf563\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Plasmonic nanoparticles (NPs) are widely utilized in various applications including sensing and imaging due to their strong localized surface plasmon resonances (LSPRs). Recently, plasmonic NP assemblies and configurations have also been explored as physical unclonable functions (PUFs) for security applications, however, many existing PUF designs face challenges such as complex fabrication processes and high costs, which complicate their implementation. This study introduces a scalable and practical approach to fabricate disordered self-assembled silver NPs for use as dual-purpose features in plasmonic devices. These nanostructures could offer multifunctionality by simultaneously serving as a functional plasmonic feature and as a potential PUF, providing an extra security layer in the device configuration. The proposed nanostructuring method could support the large-scale production of plasmonic nanostructures with desirable LSPR characteristics, essential for diverse plasmonic applications, while their structural uniqueness enables their potential exploitation as unclonable PUF fingerprints. In this work, disordered silver NPs were grown via laser annealing of silver ultrathin films with thicknesses ranging from 12.5 to 15 nm. Ultraviolet-visible spectroscopy and atomic force microscopy revealed high-intensity LSPRs and unique nanopatterns, demonstrating their potential multifunctionality.</p>\",\"PeriodicalId\":19035,\"journal\":{\"name\":\"Nanotechnology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanotechnology\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1088/1361-6528/adf563\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanotechnology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1088/1361-6528/adf563","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

等离子体纳米粒子(NPs)由于其强大的局部表面等离子体共振(LSPRs)而广泛应用于传感和成像等领域。最近,等离子体NPs作为物理不可克隆功能(PUF)也被用于安全应用,然而,许多现有的PUF设计面临着复杂的制造工艺和高成本等挑战,这使得它们的实现变得复杂。本研究介绍了一种可扩展和实用的方法来制造无序自组装银纳米粒子,用于等离子体器件的双重用途。这些纳米结构可以同时作为功能性等离子体特征和潜在的PUF,在设备配置中提供额外的安全层,从而提供多功能。所提出的纳米结构方法可以支持具有理想LSPR特性的等离子体纳米结构的大规模生产,这对于各种等离子体应用至关重要,而其结构的独特性使其具有不可克隆的PUF指纹的潜力。本文采用激光退火法制备了厚度为12.5 ~ 15 nm的银超薄膜,制备了无序银NPs。紫外-可见光谱和原子力显微镜(AFM)发现了高强度的LSPRs和独特的纳米图案,证明了它们潜在的多功能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Scalable laser fabrication of disordered dual-purpose silver nanostructures towards secure plasmonic devices.

Plasmonic nanoparticles (NPs) are widely utilized in various applications including sensing and imaging due to their strong localized surface plasmon resonances (LSPRs). Recently, plasmonic NP assemblies and configurations have also been explored as physical unclonable functions (PUFs) for security applications, however, many existing PUF designs face challenges such as complex fabrication processes and high costs, which complicate their implementation. This study introduces a scalable and practical approach to fabricate disordered self-assembled silver NPs for use as dual-purpose features in plasmonic devices. These nanostructures could offer multifunctionality by simultaneously serving as a functional plasmonic feature and as a potential PUF, providing an extra security layer in the device configuration. The proposed nanostructuring method could support the large-scale production of plasmonic nanostructures with desirable LSPR characteristics, essential for diverse plasmonic applications, while their structural uniqueness enables their potential exploitation as unclonable PUF fingerprints. In this work, disordered silver NPs were grown via laser annealing of silver ultrathin films with thicknesses ranging from 12.5 to 15 nm. Ultraviolet-visible spectroscopy and atomic force microscopy revealed high-intensity LSPRs and unique nanopatterns, demonstrating their potential multifunctionality.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nanotechnology
Nanotechnology 工程技术-材料科学:综合
CiteScore
7.10
自引率
5.70%
发文量
820
审稿时长
2.5 months
期刊介绍: The journal aims to publish papers at the forefront of nanoscale science and technology and especially those of an interdisciplinary nature. Here, nanotechnology is taken to include the ability to individually address, control, and modify structures, materials and devices with nanometre precision, and the synthesis of such structures into systems of micro- and macroscopic dimensions such as MEMS based devices. It encompasses the understanding of the fundamental physics, chemistry, biology and technology of nanometre-scale objects and how such objects can be used in the areas of computation, sensors, nanostructured materials and nano-biotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信