Chenbo Ding, Xinhui Yang, Hua Liu, Manolis Roulis, Huifang Chen, Yunzhu Chen, Hao Xu, Yimeng Gao, Jie Zhong, Hua-Bing Li, Youqiong Ye, Wei Cai, Weiguo Hu, Zhengting Wang
{"title":"METTL3通过维持Lgr5+干细胞的自我更新和分化来调节结肠上皮的完整性。","authors":"Chenbo Ding, Xinhui Yang, Hua Liu, Manolis Roulis, Huifang Chen, Yunzhu Chen, Hao Xu, Yimeng Gao, Jie Zhong, Hua-Bing Li, Youqiong Ye, Wei Cai, Weiguo Hu, Zhengting Wang","doi":"10.1093/jmcb/mjae060","DOIUrl":null,"url":null,"abstract":"<p><p>The development and homeostasis of intestinal epithelium are mediated by actively proliferating Lgr5+ stem cells, which possess a remarkable self-renewal and differentiation capacity. Recently, our study demonstrated that N6-methyladenosine (m6A) methylation was essential for the survival of colonic stem cells. Here, we show that methyltransferase-like 3 (METTL3) expression is downregulated in the colon mucosa in ulcerative colitis (UC) patients and strongly associated with the differentiation and maturation of goblet cells during inflammation. In mice, depletion of Mettl3 significantly inhibits the self-renewal and differentiation of Lgr5+ stem cells, especially the differentiation and maturation of goblet cells, resulting in intestinal dysplasia and spontaneous inflammation. Mechanistically, Mettl3 deletion-mediated m6A loss facilitates the expression levels of growth factor receptor binding protein 10 (Grb10) and interferon-related developmental regulator 1 (Ifrd1) via increasing their messenger RNA stability. We further demonstrate that the levels of GRB10 and IFRD1 are negatively correlated with METTL3 level in UC samples. Collectively, our data indicate that METTL3 enhances the self-renewal and differentiation of Lgr5+ stem cells during intestinal development and inflammation, and thus it may be a potential therapeutic target for UC treatment.</p>","PeriodicalId":16433,"journal":{"name":"Journal of Molecular Cell Biology","volume":"17 2","pages":""},"PeriodicalIF":5.9000,"publicationDate":"2025-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12309382/pdf/","citationCount":"0","resultStr":"{\"title\":\"METTL3 modulates colonic epithelium integrity via maintaining the self-renewal and differentiation of Lgr5+ stem cell.\",\"authors\":\"Chenbo Ding, Xinhui Yang, Hua Liu, Manolis Roulis, Huifang Chen, Yunzhu Chen, Hao Xu, Yimeng Gao, Jie Zhong, Hua-Bing Li, Youqiong Ye, Wei Cai, Weiguo Hu, Zhengting Wang\",\"doi\":\"10.1093/jmcb/mjae060\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The development and homeostasis of intestinal epithelium are mediated by actively proliferating Lgr5+ stem cells, which possess a remarkable self-renewal and differentiation capacity. Recently, our study demonstrated that N6-methyladenosine (m6A) methylation was essential for the survival of colonic stem cells. Here, we show that methyltransferase-like 3 (METTL3) expression is downregulated in the colon mucosa in ulcerative colitis (UC) patients and strongly associated with the differentiation and maturation of goblet cells during inflammation. In mice, depletion of Mettl3 significantly inhibits the self-renewal and differentiation of Lgr5+ stem cells, especially the differentiation and maturation of goblet cells, resulting in intestinal dysplasia and spontaneous inflammation. Mechanistically, Mettl3 deletion-mediated m6A loss facilitates the expression levels of growth factor receptor binding protein 10 (Grb10) and interferon-related developmental regulator 1 (Ifrd1) via increasing their messenger RNA stability. We further demonstrate that the levels of GRB10 and IFRD1 are negatively correlated with METTL3 level in UC samples. Collectively, our data indicate that METTL3 enhances the self-renewal and differentiation of Lgr5+ stem cells during intestinal development and inflammation, and thus it may be a potential therapeutic target for UC treatment.</p>\",\"PeriodicalId\":16433,\"journal\":{\"name\":\"Journal of Molecular Cell Biology\",\"volume\":\"17 2\",\"pages\":\"\"},\"PeriodicalIF\":5.9000,\"publicationDate\":\"2025-07-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12309382/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Molecular Cell Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/jmcb/mjae060\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Cell Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/jmcb/mjae060","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
METTL3 modulates colonic epithelium integrity via maintaining the self-renewal and differentiation of Lgr5+ stem cell.
The development and homeostasis of intestinal epithelium are mediated by actively proliferating Lgr5+ stem cells, which possess a remarkable self-renewal and differentiation capacity. Recently, our study demonstrated that N6-methyladenosine (m6A) methylation was essential for the survival of colonic stem cells. Here, we show that methyltransferase-like 3 (METTL3) expression is downregulated in the colon mucosa in ulcerative colitis (UC) patients and strongly associated with the differentiation and maturation of goblet cells during inflammation. In mice, depletion of Mettl3 significantly inhibits the self-renewal and differentiation of Lgr5+ stem cells, especially the differentiation and maturation of goblet cells, resulting in intestinal dysplasia and spontaneous inflammation. Mechanistically, Mettl3 deletion-mediated m6A loss facilitates the expression levels of growth factor receptor binding protein 10 (Grb10) and interferon-related developmental regulator 1 (Ifrd1) via increasing their messenger RNA stability. We further demonstrate that the levels of GRB10 and IFRD1 are negatively correlated with METTL3 level in UC samples. Collectively, our data indicate that METTL3 enhances the self-renewal and differentiation of Lgr5+ stem cells during intestinal development and inflammation, and thus it may be a potential therapeutic target for UC treatment.
期刊介绍:
The Journal of Molecular Cell Biology ( JMCB ) is a full open access, peer-reviewed online journal interested in inter-disciplinary studies at the cross-sections between molecular and cell biology as well as other disciplines of life sciences. The broad scope of JMCB reflects the merging of these life science disciplines such as stem cell research, signaling, genetics, epigenetics, genomics, development, immunology, cancer biology, molecular pathogenesis, neuroscience, and systems biology. The journal will publish primary research papers with findings of unusual significance and broad scientific interest. Review articles, letters and commentary on timely issues are also welcome.
JMCB features an outstanding Editorial Board, which will serve as scientific advisors to the journal and provide strategic guidance for the development of the journal. By selecting only the best papers for publication, JMCB will provide a first rate publishing forum for scientists all over the world.