Jiwon Choi, Kyung-Hee Cho, Jiwon Im, Yeeun Seo, Amitesh Sharma, Kartic, Shivani Devi, Nattan Stalin, Seo Jin Park, Tae-Sik Park
{"title":"重组细胞可透性嘌呤霉素n -乙酰转移酶通过直接蛋白转导赋予嘌呤霉素抗性。","authors":"Jiwon Choi, Kyung-Hee Cho, Jiwon Im, Yeeun Seo, Amitesh Sharma, Kartic, Shivani Devi, Nattan Stalin, Seo Jin Park, Tae-Sik Park","doi":"10.4014/jmb.2502.02049","DOIUrl":null,"url":null,"abstract":"<p><p>Puromycin N-acetyltransferase (PAC) is an enzyme that catalyzes the acetylation of puromycin, an inhibitor of protein synthesis. The PAC gene is often co-transfected with genes of interest in the same vector to serve as a selective marker, conferring puromycin resistance to mammalian cells. Cell-penetrating peptides (CPPs), which are 5-30 amino acids in length, facilitate the translocation of functional cargoes across the cell membrane. Among these, the HIV-transactivator of transcription (TAT) sequence is widely applied for its cell-penetrating and protein-delivery capabilities. In this study, we investigated whether attachment of the TAT sequence to PAC (TAT-PAC) enables intracellular delivery of TAT-PAC protein into mammalian cells, thereby conferring puromycin resistance. A recombinant TAT-PAC protein was expressed in <i>Escherichia coli</i> and purified to homogeneity. The purified TAT-PAC protein retained enzymatic activity, with a specific activity of 197 nmol/min/mg. Intracellular delivery of TAT-PAC was confirmed using confocal microscopy and flow cytometry, employing an RFP (red fluorescent protein)-tagged TAT-PAC fusion protein. Treatment of HEK293 and SY5Y cells with TAT-PAC resulted in increased cell viability in the presence of puromycin, demonstrating its functionality as a selection marker. This study suggests the potential application of cell-permeable PAC protein for selection of co-delivered therapeutic or gene-editing proteins in mammalian cells, providing a promising alternative to traditional genetic selection methods.</p>","PeriodicalId":16481,"journal":{"name":"Journal of microbiology and biotechnology","volume":"35 ","pages":"e2502049"},"PeriodicalIF":3.1000,"publicationDate":"2025-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12325001/pdf/","citationCount":"0","resultStr":"{\"title\":\"Recombinant Cell-Permeable Puromycin <i>N</i>-Acetyltransferase Confers Puromycin Resistance by Direct Protein Transduction.\",\"authors\":\"Jiwon Choi, Kyung-Hee Cho, Jiwon Im, Yeeun Seo, Amitesh Sharma, Kartic, Shivani Devi, Nattan Stalin, Seo Jin Park, Tae-Sik Park\",\"doi\":\"10.4014/jmb.2502.02049\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Puromycin N-acetyltransferase (PAC) is an enzyme that catalyzes the acetylation of puromycin, an inhibitor of protein synthesis. The PAC gene is often co-transfected with genes of interest in the same vector to serve as a selective marker, conferring puromycin resistance to mammalian cells. Cell-penetrating peptides (CPPs), which are 5-30 amino acids in length, facilitate the translocation of functional cargoes across the cell membrane. Among these, the HIV-transactivator of transcription (TAT) sequence is widely applied for its cell-penetrating and protein-delivery capabilities. In this study, we investigated whether attachment of the TAT sequence to PAC (TAT-PAC) enables intracellular delivery of TAT-PAC protein into mammalian cells, thereby conferring puromycin resistance. A recombinant TAT-PAC protein was expressed in <i>Escherichia coli</i> and purified to homogeneity. The purified TAT-PAC protein retained enzymatic activity, with a specific activity of 197 nmol/min/mg. Intracellular delivery of TAT-PAC was confirmed using confocal microscopy and flow cytometry, employing an RFP (red fluorescent protein)-tagged TAT-PAC fusion protein. Treatment of HEK293 and SY5Y cells with TAT-PAC resulted in increased cell viability in the presence of puromycin, demonstrating its functionality as a selection marker. This study suggests the potential application of cell-permeable PAC protein for selection of co-delivered therapeutic or gene-editing proteins in mammalian cells, providing a promising alternative to traditional genetic selection methods.</p>\",\"PeriodicalId\":16481,\"journal\":{\"name\":\"Journal of microbiology and biotechnology\",\"volume\":\"35 \",\"pages\":\"e2502049\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2025-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12325001/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of microbiology and biotechnology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.4014/jmb.2502.02049\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of microbiology and biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.4014/jmb.2502.02049","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Recombinant Cell-Permeable Puromycin N-Acetyltransferase Confers Puromycin Resistance by Direct Protein Transduction.
Puromycin N-acetyltransferase (PAC) is an enzyme that catalyzes the acetylation of puromycin, an inhibitor of protein synthesis. The PAC gene is often co-transfected with genes of interest in the same vector to serve as a selective marker, conferring puromycin resistance to mammalian cells. Cell-penetrating peptides (CPPs), which are 5-30 amino acids in length, facilitate the translocation of functional cargoes across the cell membrane. Among these, the HIV-transactivator of transcription (TAT) sequence is widely applied for its cell-penetrating and protein-delivery capabilities. In this study, we investigated whether attachment of the TAT sequence to PAC (TAT-PAC) enables intracellular delivery of TAT-PAC protein into mammalian cells, thereby conferring puromycin resistance. A recombinant TAT-PAC protein was expressed in Escherichia coli and purified to homogeneity. The purified TAT-PAC protein retained enzymatic activity, with a specific activity of 197 nmol/min/mg. Intracellular delivery of TAT-PAC was confirmed using confocal microscopy and flow cytometry, employing an RFP (red fluorescent protein)-tagged TAT-PAC fusion protein. Treatment of HEK293 and SY5Y cells with TAT-PAC resulted in increased cell viability in the presence of puromycin, demonstrating its functionality as a selection marker. This study suggests the potential application of cell-permeable PAC protein for selection of co-delivered therapeutic or gene-editing proteins in mammalian cells, providing a promising alternative to traditional genetic selection methods.
期刊介绍:
The Journal of Microbiology and Biotechnology (JMB) is a monthly international journal devoted to the advancement and dissemination of scientific knowledge pertaining to microbiology, biotechnology, and related academic disciplines. It covers various scientific and technological aspects of Molecular and Cellular Microbiology, Environmental Microbiology and Biotechnology, Food Biotechnology, and Biotechnology and Bioengineering (subcategories are listed below). Launched in March 1991, the JMB is published by the Korean Society for Microbiology and Biotechnology (KMB) and distributed worldwide.