bmscs -亲和肽功能化透明质酸/聚多巴胺混合纳米纤维支架的制备控制镁离子释放,促进成骨分化,促进骨再生。

IF 6.5 3区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS
Jingzhe Zhang, Xinkun Wang, Xinbiao Fu, Ye Li
{"title":"bmscs -亲和肽功能化透明质酸/聚多巴胺混合纳米纤维支架的制备控制镁离子释放,促进成骨分化,促进骨再生。","authors":"Jingzhe Zhang, Xinkun Wang, Xinbiao Fu, Ye Li","doi":"10.1186/s13036-025-00529-5","DOIUrl":null,"url":null,"abstract":"<p><p>Bone regeneration requires innovative solutions to enhance osteogenic differentiation and support effective tissue repair. This study presents a novel approach to bone tissue engineering by developing peptide-functionalized nanofibrous scaffolds (NFS). The fabrication of a blended hyaluronic acid (HA) and polydopamine (PD) scaffold functionalized with bone marrow mesenchymal stem cells (BMSCs)-affinity peptides (AP) designed to control magnesium ion (Mg) release, which supports BMSCs' osteogenic differentiation and bone regeneration. Characterization studies, including fourier-transform infrared spectroscopy (FTIR) and morphological analysis, confirmed the hydrophilic properties of HA/PDNFS@BMSCs-AP scaffolds, which enhance cell adhesion and proliferation. In vitro and In vivo assessments revealed that the scaffolds significantly promote osteogenesis through AP-induced pathways such as extracellular signal-regulated kinase pathway (ERK) and Phosphatidylinositol 3-kinase (Akt),. Animal model experiments demonstrated accelerated bone repair, supporting the potential of HA/PDNFS@BMSCs-AP scaffolds for targeted bone defect healing. These findings highlight the promise of functionalized nanofibrous scaffolds in bone tissue engineering and their potential application in regenerative medicine and translational research.</p>","PeriodicalId":15053,"journal":{"name":"Journal of Biological Engineering","volume":"19 1","pages":"72"},"PeriodicalIF":6.5000,"publicationDate":"2025-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12305988/pdf/","citationCount":"0","resultStr":"{\"title\":\"Fabrication of BMSCs-affinity peptide functionalized blended hyaluronic acid/polydopamine nanofibrous scaffolds to controlled Mg ion release and improved osteogenic differentiations for accelerating bone regeneration.\",\"authors\":\"Jingzhe Zhang, Xinkun Wang, Xinbiao Fu, Ye Li\",\"doi\":\"10.1186/s13036-025-00529-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Bone regeneration requires innovative solutions to enhance osteogenic differentiation and support effective tissue repair. This study presents a novel approach to bone tissue engineering by developing peptide-functionalized nanofibrous scaffolds (NFS). The fabrication of a blended hyaluronic acid (HA) and polydopamine (PD) scaffold functionalized with bone marrow mesenchymal stem cells (BMSCs)-affinity peptides (AP) designed to control magnesium ion (Mg) release, which supports BMSCs' osteogenic differentiation and bone regeneration. Characterization studies, including fourier-transform infrared spectroscopy (FTIR) and morphological analysis, confirmed the hydrophilic properties of HA/PDNFS@BMSCs-AP scaffolds, which enhance cell adhesion and proliferation. In vitro and In vivo assessments revealed that the scaffolds significantly promote osteogenesis through AP-induced pathways such as extracellular signal-regulated kinase pathway (ERK) and Phosphatidylinositol 3-kinase (Akt),. Animal model experiments demonstrated accelerated bone repair, supporting the potential of HA/PDNFS@BMSCs-AP scaffolds for targeted bone defect healing. These findings highlight the promise of functionalized nanofibrous scaffolds in bone tissue engineering and their potential application in regenerative medicine and translational research.</p>\",\"PeriodicalId\":15053,\"journal\":{\"name\":\"Journal of Biological Engineering\",\"volume\":\"19 1\",\"pages\":\"72\"},\"PeriodicalIF\":6.5000,\"publicationDate\":\"2025-07-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12305988/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Biological Engineering\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1186/s13036-025-00529-5\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biological Engineering","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13036-025-00529-5","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

骨再生需要创新的解决方案来增强成骨分化和支持有效的组织修复。本研究提出了一种利用肽功能化纳米纤维支架(NFS)进行骨组织工程的新方法。利用骨髓间充质干细胞(BMSCs)-亲和肽(AP)控制镁离子(Mg)释放的透明质酸(HA)和多多巴胺(PD)混合支架的制备,支持BMSCs的成骨分化和骨再生。表征研究,包括傅里叶变换红外光谱(FTIR)和形态学分析,证实了HA/PDNFS@BMSCs-AP支架的亲水性,增强了细胞的粘附和增殖。体外和体内实验表明,该支架可通过ap诱导的细胞外信号调节激酶(ERK)和磷脂酰肌醇3-激酶(Akt)等途径显著促进骨生成。动物模型实验显示骨修复加速,支持HA/PDNFS@BMSCs-AP支架靶向骨缺损愈合的潜力。这些发现突出了功能化纳米纤维支架在骨组织工程中的前景及其在再生医学和转化研究中的潜在应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fabrication of BMSCs-affinity peptide functionalized blended hyaluronic acid/polydopamine nanofibrous scaffolds to controlled Mg ion release and improved osteogenic differentiations for accelerating bone regeneration.

Bone regeneration requires innovative solutions to enhance osteogenic differentiation and support effective tissue repair. This study presents a novel approach to bone tissue engineering by developing peptide-functionalized nanofibrous scaffolds (NFS). The fabrication of a blended hyaluronic acid (HA) and polydopamine (PD) scaffold functionalized with bone marrow mesenchymal stem cells (BMSCs)-affinity peptides (AP) designed to control magnesium ion (Mg) release, which supports BMSCs' osteogenic differentiation and bone regeneration. Characterization studies, including fourier-transform infrared spectroscopy (FTIR) and morphological analysis, confirmed the hydrophilic properties of HA/PDNFS@BMSCs-AP scaffolds, which enhance cell adhesion and proliferation. In vitro and In vivo assessments revealed that the scaffolds significantly promote osteogenesis through AP-induced pathways such as extracellular signal-regulated kinase pathway (ERK) and Phosphatidylinositol 3-kinase (Akt),. Animal model experiments demonstrated accelerated bone repair, supporting the potential of HA/PDNFS@BMSCs-AP scaffolds for targeted bone defect healing. These findings highlight the promise of functionalized nanofibrous scaffolds in bone tissue engineering and their potential application in regenerative medicine and translational research.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Biological Engineering
Journal of Biological Engineering BIOCHEMICAL RESEARCH METHODS-BIOTECHNOLOGY & APPLIED MICROBIOLOGY
CiteScore
7.10
自引率
1.80%
发文量
32
审稿时长
17 weeks
期刊介绍: Biological engineering is an emerging discipline that encompasses engineering theory and practice connected to and derived from the science of biology, just as mechanical engineering and electrical engineering are rooted in physics and chemical engineering in chemistry. Topical areas include, but are not limited to: Synthetic biology and cellular design Biomolecular, cellular and tissue engineering Bioproduction and metabolic engineering Biosensors Ecological and environmental engineering Biological engineering education and the biodesign process As the official journal of the Institute of Biological Engineering, Journal of Biological Engineering provides a home for the continuum from biological information science, molecules and cells, product formation, wastes and remediation, and educational advances in curriculum content and pedagogy at the undergraduate and graduate-levels. Manuscripts should explore commonalities with other fields of application by providing some discussion of the broader context of the work and how it connects to other areas within the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信