人血浆代谢组学揭示干预盐敏感性高血压的代谢靶点。

IF 4.6 2区 医学 Q1 PERIPHERAL VASCULAR DISEASE
Pengfei Yang, Xiangbo Chen, Mingxiao Liu, Xian Li, Yang Wang, Jianjun Mu, Yanan Ouyang, Tailin Wu, Zhe Yang, Di Gao, Zhongmin Tian
{"title":"人血浆代谢组学揭示干预盐敏感性高血压的代谢靶点。","authors":"Pengfei Yang, Xiangbo Chen, Mingxiao Liu, Xian Li, Yang Wang, Jianjun Mu, Yanan Ouyang, Tailin Wu, Zhe Yang, Di Gao, Zhongmin Tian","doi":"10.1038/s41440-025-02280-2","DOIUrl":null,"url":null,"abstract":"Salt-sensitive hypertension (SSH) is a major risk factor for cardiovascular disease, but its metabolic mechanisms remain unclear. This study investigates the plasma metabolic profile of SSH patients to identify potential therapeutic targets. Additionally, SSH patients were identified through an oral salt-loading test. Plasma metabolomics was performed by utilizing GC-MS and LC-MS, followed by network correlation analysis, pathway enrichment, receiver operating characteristic analysis, and linear regression analysis. The findings were validated in Dahl salt-sensitive (SS) rats, with glycine supplementation evaluated as a potential therapeutic intervention. Firstly, plasma metabolomics illustrated distinct metabolic alterations in SSH patients, with substantially increased levels of fumaric acid, pyruvat,e and lactic acid, as well as significantly decreased levels of glycine, leucine and β-alanine (p < 0.05). Additionally, Glycine and β-alanine levels decreased by 61% and 68% compared to the control group. Secondly, pathway enrichment analysis identified disruptions in amino acid metabolism, particularly Arginine biosynthesis pathway, TCA pathway, glycine, serine, and threonine metabolism pathways were significantly enriched (p < 0.05). Correlation network analysis identified fumarate as a hub metabolite in the pathophysiology of SSH. Glycine showed the highest predictive value for SSH (AUC = 94.6181%) and was negatively correlated with blood pressure. Finally, glycine supplementation in SS rats substantially reduced salt-induced hypertension (p < 0.001) by improving renal amino acid metabolism and enhancing nitric oxide production. This study identifies glycine as a crucial metabolic target for SSH intervention. Glycine supplementation effectively alleviates SSH in animal models, indicating its potential for clinical applications. Future research should focus on exploring glycine-based therapies in clinical trials. These authors contributed equally:","PeriodicalId":13029,"journal":{"name":"Hypertension Research","volume":"48 10","pages":"2567-2583"},"PeriodicalIF":4.6000,"publicationDate":"2025-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Human plasma metabolomics reveals metabolic targets for intervention in salt-sensitive hypertension\",\"authors\":\"Pengfei Yang, Xiangbo Chen, Mingxiao Liu, Xian Li, Yang Wang, Jianjun Mu, Yanan Ouyang, Tailin Wu, Zhe Yang, Di Gao, Zhongmin Tian\",\"doi\":\"10.1038/s41440-025-02280-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Salt-sensitive hypertension (SSH) is a major risk factor for cardiovascular disease, but its metabolic mechanisms remain unclear. This study investigates the plasma metabolic profile of SSH patients to identify potential therapeutic targets. Additionally, SSH patients were identified through an oral salt-loading test. Plasma metabolomics was performed by utilizing GC-MS and LC-MS, followed by network correlation analysis, pathway enrichment, receiver operating characteristic analysis, and linear regression analysis. The findings were validated in Dahl salt-sensitive (SS) rats, with glycine supplementation evaluated as a potential therapeutic intervention. Firstly, plasma metabolomics illustrated distinct metabolic alterations in SSH patients, with substantially increased levels of fumaric acid, pyruvat,e and lactic acid, as well as significantly decreased levels of glycine, leucine and β-alanine (p < 0.05). Additionally, Glycine and β-alanine levels decreased by 61% and 68% compared to the control group. Secondly, pathway enrichment analysis identified disruptions in amino acid metabolism, particularly Arginine biosynthesis pathway, TCA pathway, glycine, serine, and threonine metabolism pathways were significantly enriched (p < 0.05). Correlation network analysis identified fumarate as a hub metabolite in the pathophysiology of SSH. Glycine showed the highest predictive value for SSH (AUC = 94.6181%) and was negatively correlated with blood pressure. Finally, glycine supplementation in SS rats substantially reduced salt-induced hypertension (p < 0.001) by improving renal amino acid metabolism and enhancing nitric oxide production. This study identifies glycine as a crucial metabolic target for SSH intervention. Glycine supplementation effectively alleviates SSH in animal models, indicating its potential for clinical applications. Future research should focus on exploring glycine-based therapies in clinical trials. These authors contributed equally:\",\"PeriodicalId\":13029,\"journal\":{\"name\":\"Hypertension Research\",\"volume\":\"48 10\",\"pages\":\"2567-2583\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-07-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Hypertension Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.nature.com/articles/s41440-025-02280-2\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PERIPHERAL VASCULAR DISEASE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hypertension Research","FirstCategoryId":"3","ListUrlMain":"https://www.nature.com/articles/s41440-025-02280-2","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PERIPHERAL VASCULAR DISEASE","Score":null,"Total":0}
引用次数: 0

摘要

盐敏感性高血压(SSH)是心血管疾病的主要危险因素,但其代谢机制尚不清楚。本研究探讨了SSH患者的血浆代谢特征,以确定潜在的治疗靶点。此外,通过口腔盐负荷试验确定SSH患者。采用GC-MS和LC-MS进行血浆代谢组学分析,随后进行网络相关分析、途径富集分析、受试者工作特征分析和线性回归分析。研究结果在达尔盐敏感(SS)大鼠中得到了验证,甘氨酸补充剂被评估为潜在的治疗干预措施。首先,血浆代谢组学显示了SSH患者明显的代谢改变,富马酸、丙酮醇、e和乳酸水平显著升高,甘氨酸、亮氨酸和β-丙氨酸水平显著降低(p
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Human plasma metabolomics reveals metabolic targets for intervention in salt-sensitive hypertension

Human plasma metabolomics reveals metabolic targets for intervention in salt-sensitive hypertension
Salt-sensitive hypertension (SSH) is a major risk factor for cardiovascular disease, but its metabolic mechanisms remain unclear. This study investigates the plasma metabolic profile of SSH patients to identify potential therapeutic targets. Additionally, SSH patients were identified through an oral salt-loading test. Plasma metabolomics was performed by utilizing GC-MS and LC-MS, followed by network correlation analysis, pathway enrichment, receiver operating characteristic analysis, and linear regression analysis. The findings were validated in Dahl salt-sensitive (SS) rats, with glycine supplementation evaluated as a potential therapeutic intervention. Firstly, plasma metabolomics illustrated distinct metabolic alterations in SSH patients, with substantially increased levels of fumaric acid, pyruvat,e and lactic acid, as well as significantly decreased levels of glycine, leucine and β-alanine (p < 0.05). Additionally, Glycine and β-alanine levels decreased by 61% and 68% compared to the control group. Secondly, pathway enrichment analysis identified disruptions in amino acid metabolism, particularly Arginine biosynthesis pathway, TCA pathway, glycine, serine, and threonine metabolism pathways were significantly enriched (p < 0.05). Correlation network analysis identified fumarate as a hub metabolite in the pathophysiology of SSH. Glycine showed the highest predictive value for SSH (AUC = 94.6181%) and was negatively correlated with blood pressure. Finally, glycine supplementation in SS rats substantially reduced salt-induced hypertension (p < 0.001) by improving renal amino acid metabolism and enhancing nitric oxide production. This study identifies glycine as a crucial metabolic target for SSH intervention. Glycine supplementation effectively alleviates SSH in animal models, indicating its potential for clinical applications. Future research should focus on exploring glycine-based therapies in clinical trials. These authors contributed equally:
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Hypertension Research
Hypertension Research 医学-外周血管病
CiteScore
7.40
自引率
16.70%
发文量
249
审稿时长
3-8 weeks
期刊介绍: Hypertension Research is the official publication of the Japanese Society of Hypertension. The journal publishes papers reporting original clinical and experimental research that contribute to the advancement of knowledge in the field of hypertension and related cardiovascular diseases. The journal publishes Review Articles, Articles, Correspondence and Comments.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信