朋友还是敌人?一种共生微生物的浓度在暴露于田间实际杀虫剂浓度的发育中的蜜蜂中引起不同的反应。

IF 3.2 3区 生物学 Q2 MICROBIOLOGY
Monika Yordanova, Xiao Zhang, Carlota B Torres, Sophie E F Evison, Richard J Gill, Peter Graystock
{"title":"朋友还是敌人?一种共生微生物的浓度在暴露于田间实际杀虫剂浓度的发育中的蜜蜂中引起不同的反应。","authors":"Monika Yordanova, Xiao Zhang, Carlota B Torres, Sophie E F Evison, Richard J Gill, Peter Graystock","doi":"10.1093/femsec/fiaf080","DOIUrl":null,"url":null,"abstract":"<p><p>Commensal microbes play important roles in modulating host health through varied mechanisms. Enterococcus faecalis, a Gram-positive commensal bacterium found across a wide range of hosts, has the potential to benefit its host through probiotic, antimicrobial and detoxification properties. However, it can also cause adverse effects, disrupting the host's healthy microbial communities and responses to co-stressors. Its context-dependent impact on the health of the agriculturally important pollinator - Apis mellifera - has been sparsely explored. Here, we examined the effects on honey bee brood survivorship and development when exposed at different concentrations and when co-exposed with chemical stressors (acetamiprid, thymol, glyphosate, and a mixture of the three). We found high doses of E. faecalis significantly reduced larval survivorship and size of brood at multiple developmental stages. Conversely, we found that low doses of E. faecalis increased larval size when individuals were co-exposed to the pesticide mixture. We also found that glyphosate alone and the pesticide mixture reduced the mass of brown-eyed pupae. These results are the first to show the dual role of E. faecalis in honey bee health is dependent on the concentration of the microbe and the co-stressors that brood are exposed to.</p>","PeriodicalId":12312,"journal":{"name":"FEMS microbiology ecology","volume":" ","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2025-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12418955/pdf/","citationCount":"0","resultStr":"{\"title\":\"Friend or foe? Concentration of a commensal microbe induces distinct responses in developing honey bees exposed to field-realistic pesticide concentrations.\",\"authors\":\"Monika Yordanova, Xiao Zhang, Carlota B Torres, Sophie E F Evison, Richard J Gill, Peter Graystock\",\"doi\":\"10.1093/femsec/fiaf080\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Commensal microbes play important roles in modulating host health through varied mechanisms. Enterococcus faecalis, a Gram-positive commensal bacterium found across a wide range of hosts, has the potential to benefit its host through probiotic, antimicrobial and detoxification properties. However, it can also cause adverse effects, disrupting the host's healthy microbial communities and responses to co-stressors. Its context-dependent impact on the health of the agriculturally important pollinator - Apis mellifera - has been sparsely explored. Here, we examined the effects on honey bee brood survivorship and development when exposed at different concentrations and when co-exposed with chemical stressors (acetamiprid, thymol, glyphosate, and a mixture of the three). We found high doses of E. faecalis significantly reduced larval survivorship and size of brood at multiple developmental stages. Conversely, we found that low doses of E. faecalis increased larval size when individuals were co-exposed to the pesticide mixture. We also found that glyphosate alone and the pesticide mixture reduced the mass of brown-eyed pupae. These results are the first to show the dual role of E. faecalis in honey bee health is dependent on the concentration of the microbe and the co-stressors that brood are exposed to.</p>\",\"PeriodicalId\":12312,\"journal\":{\"name\":\"FEMS microbiology ecology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2025-08-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12418955/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"FEMS microbiology ecology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/femsec/fiaf080\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"FEMS microbiology ecology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/femsec/fiaf080","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

共生微生物通过多种机制在调节宿主健康方面发挥着重要作用。粪肠球菌(Enterococcus faecalis)是一种广泛存在于宿主体内的革兰氏阳性共生细菌,具有通过益生菌、抗菌和解毒特性使宿主受益的潜力。然而,它也会造成不良影响,破坏宿主健康的微生物群落和对共同压力源的反应。它对农业上重要的传粉媒介——蜜蜂的健康的环境依赖影响已经很少被探索。在这里,我们研究了暴露在不同浓度和与化学应激源(醋氨虫、百里酚、草甘膦和三者的混合物)共同暴露时对蜜蜂幼崽生存和发育的影响。我们发现高浓度的粪伊蚊显著降低了不同发育阶段的幼虫存活率和幼虫体积。相反,我们发现低浓度的粪伊蚊在暴露于农药混合物时可以增加幼虫的体积。我们还发现,单独使用草甘膦和农药混合物可以减少褐眼蛹的质量。这些结果首次显示了粪肠杆菌在蜜蜂健康中的双重作用,这取决于微生物的浓度和育雏所暴露的共应激源。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Friend or foe? Concentration of a commensal microbe induces distinct responses in developing honey bees exposed to field-realistic pesticide concentrations.

Friend or foe? Concentration of a commensal microbe induces distinct responses in developing honey bees exposed to field-realistic pesticide concentrations.

Friend or foe? Concentration of a commensal microbe induces distinct responses in developing honey bees exposed to field-realistic pesticide concentrations.

Friend or foe? Concentration of a commensal microbe induces distinct responses in developing honey bees exposed to field-realistic pesticide concentrations.

Commensal microbes play important roles in modulating host health through varied mechanisms. Enterococcus faecalis, a Gram-positive commensal bacterium found across a wide range of hosts, has the potential to benefit its host through probiotic, antimicrobial and detoxification properties. However, it can also cause adverse effects, disrupting the host's healthy microbial communities and responses to co-stressors. Its context-dependent impact on the health of the agriculturally important pollinator - Apis mellifera - has been sparsely explored. Here, we examined the effects on honey bee brood survivorship and development when exposed at different concentrations and when co-exposed with chemical stressors (acetamiprid, thymol, glyphosate, and a mixture of the three). We found high doses of E. faecalis significantly reduced larval survivorship and size of brood at multiple developmental stages. Conversely, we found that low doses of E. faecalis increased larval size when individuals were co-exposed to the pesticide mixture. We also found that glyphosate alone and the pesticide mixture reduced the mass of brown-eyed pupae. These results are the first to show the dual role of E. faecalis in honey bee health is dependent on the concentration of the microbe and the co-stressors that brood are exposed to.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
FEMS microbiology ecology
FEMS microbiology ecology 生物-微生物学
CiteScore
7.50
自引率
2.40%
发文量
132
审稿时长
3 months
期刊介绍: FEMS Microbiology Ecology aims to ensure efficient publication of high-quality papers that are original and provide a significant contribution to the understanding of microbial ecology. The journal contains Research Articles and MiniReviews on fundamental aspects of the ecology of microorganisms in natural soil, aquatic and atmospheric habitats, including extreme environments, and in artificial or managed environments. Research papers on pure cultures and in the areas of plant pathology and medical, food or veterinary microbiology will be published where they provide valuable generic information on microbial ecology. Papers can deal with culturable and non-culturable forms of any type of microorganism: bacteria, archaea, filamentous fungi, yeasts, protozoa, cyanobacteria, algae or viruses. In addition, the journal will publish Perspectives, Current Opinion and Controversy Articles, Commentaries and Letters to the Editor on topical issues in microbial ecology. - Application of ecological theory to microbial ecology - Interactions and signalling between microorganisms and with plants and animals - Interactions between microorganisms and their physicochemical enviornment - Microbial aspects of biogeochemical cycles and processes - Microbial community ecology - Phylogenetic and functional diversity of microbial communities - Evolutionary biology of microorganisms
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信