{"title":"补充柚皮苷可减少大鼠脑缺血时小脑的炎症过程。","authors":"Zubeyde Babacanoglu, Gozde Acar, Tugce Aladag, Saltuk Bugra Baltaci, Rasim Mogulkoc, Abdulkerim Kasim Baltaci","doi":"10.2174/0115680266394794250717115624","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>During cerebral ischemia, brain tissue is damaged in two successive stages: ischemia and reperfusion (I/R). In the ischemic phase, brain tissue undergoes energy failure due to an impaired circulatory system (cerebrovascular), resulting in oxygen and glucose deprivation and consequent brain damage.</p><p><strong>Objective: </strong>The study aimed to determine the effect of a two-week administration of naringin on caspase-3, IL-17, and NF-κB levels in cerebellar tissue in experimental focal brain ischemiareperfusion in rats.</p><p><strong>Methods: </strong>The research was conducted on 10- to 12-week-old Wistar-type rats obtained from the Selcuk University Experimental Animals Research and Application Center. Experimental brain ischemia-reperfusion in rats was performed under general anesthesia (carotid arteries were exposed to ischemia for 30 minutes). Experimental groups were formed as follows. 1) Control group, 2) Sham, 3) Sham + vehicle, 4) Ischemia-reperfusion, 5) Ischemia-reperfusion + Naringin supplemented group for two weeks (100mg/kg). At the end of the experiments, the levels of IL-17, caspase-3, and NF-κB were determined in the cerebellum tissue of the animals under general anesthesia. First of all, blood was drawn from the heart, and the animals were killed by cervical dislocation.</p><p><strong>Results: </strong>Experimental brain ischemia-reperfusion significantly increased caspase-3, IL-17, and NF-κB levels in the brain tissue of rats. In contrast, naringin supplementation for 2 weeks significantly suppressed the ischemia-reperfusion-induced inflammatory process.</p><p><strong>Discussion: </strong>The findings obtained from our research generally showed that, as a result of focal brain ischemia-reperfusion in rats, the levels of NF-κB, a key molecule involved in inflammatory pathways, as well as the pro-inflammatory cytokine IL-17 and caspase-3, an indicator of apoptosis, increased significantly in cerebellar tissue. However, intragastric naringin supplementation for two weeks following ischemia-reperfusion led to significant improvements in the adverse effects caused by the ischemic injury.</p><p><strong>Conclusion: </strong>The study's results demonstrate that naringin treatment effectively mitigates inflammatory activation in the cerebellum following brain ischemia-reperfusion in rats.</p>","PeriodicalId":11076,"journal":{"name":"Current topics in medicinal chemistry","volume":" ","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2025-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Naringin Supplementation Reduces Inflammatory Processes in the Cerebellum in Brain Ischemia of Rats.\",\"authors\":\"Zubeyde Babacanoglu, Gozde Acar, Tugce Aladag, Saltuk Bugra Baltaci, Rasim Mogulkoc, Abdulkerim Kasim Baltaci\",\"doi\":\"10.2174/0115680266394794250717115624\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Introduction: </strong>During cerebral ischemia, brain tissue is damaged in two successive stages: ischemia and reperfusion (I/R). In the ischemic phase, brain tissue undergoes energy failure due to an impaired circulatory system (cerebrovascular), resulting in oxygen and glucose deprivation and consequent brain damage.</p><p><strong>Objective: </strong>The study aimed to determine the effect of a two-week administration of naringin on caspase-3, IL-17, and NF-κB levels in cerebellar tissue in experimental focal brain ischemiareperfusion in rats.</p><p><strong>Methods: </strong>The research was conducted on 10- to 12-week-old Wistar-type rats obtained from the Selcuk University Experimental Animals Research and Application Center. Experimental brain ischemia-reperfusion in rats was performed under general anesthesia (carotid arteries were exposed to ischemia for 30 minutes). Experimental groups were formed as follows. 1) Control group, 2) Sham, 3) Sham + vehicle, 4) Ischemia-reperfusion, 5) Ischemia-reperfusion + Naringin supplemented group for two weeks (100mg/kg). At the end of the experiments, the levels of IL-17, caspase-3, and NF-κB were determined in the cerebellum tissue of the animals under general anesthesia. First of all, blood was drawn from the heart, and the animals were killed by cervical dislocation.</p><p><strong>Results: </strong>Experimental brain ischemia-reperfusion significantly increased caspase-3, IL-17, and NF-κB levels in the brain tissue of rats. In contrast, naringin supplementation for 2 weeks significantly suppressed the ischemia-reperfusion-induced inflammatory process.</p><p><strong>Discussion: </strong>The findings obtained from our research generally showed that, as a result of focal brain ischemia-reperfusion in rats, the levels of NF-κB, a key molecule involved in inflammatory pathways, as well as the pro-inflammatory cytokine IL-17 and caspase-3, an indicator of apoptosis, increased significantly in cerebellar tissue. However, intragastric naringin supplementation for two weeks following ischemia-reperfusion led to significant improvements in the adverse effects caused by the ischemic injury.</p><p><strong>Conclusion: </strong>The study's results demonstrate that naringin treatment effectively mitigates inflammatory activation in the cerebellum following brain ischemia-reperfusion in rats.</p>\",\"PeriodicalId\":11076,\"journal\":{\"name\":\"Current topics in medicinal chemistry\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2025-07-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current topics in medicinal chemistry\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.2174/0115680266394794250717115624\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current topics in medicinal chemistry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/0115680266394794250717115624","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
Naringin Supplementation Reduces Inflammatory Processes in the Cerebellum in Brain Ischemia of Rats.
Introduction: During cerebral ischemia, brain tissue is damaged in two successive stages: ischemia and reperfusion (I/R). In the ischemic phase, brain tissue undergoes energy failure due to an impaired circulatory system (cerebrovascular), resulting in oxygen and glucose deprivation and consequent brain damage.
Objective: The study aimed to determine the effect of a two-week administration of naringin on caspase-3, IL-17, and NF-κB levels in cerebellar tissue in experimental focal brain ischemiareperfusion in rats.
Methods: The research was conducted on 10- to 12-week-old Wistar-type rats obtained from the Selcuk University Experimental Animals Research and Application Center. Experimental brain ischemia-reperfusion in rats was performed under general anesthesia (carotid arteries were exposed to ischemia for 30 minutes). Experimental groups were formed as follows. 1) Control group, 2) Sham, 3) Sham + vehicle, 4) Ischemia-reperfusion, 5) Ischemia-reperfusion + Naringin supplemented group for two weeks (100mg/kg). At the end of the experiments, the levels of IL-17, caspase-3, and NF-κB were determined in the cerebellum tissue of the animals under general anesthesia. First of all, blood was drawn from the heart, and the animals were killed by cervical dislocation.
Results: Experimental brain ischemia-reperfusion significantly increased caspase-3, IL-17, and NF-κB levels in the brain tissue of rats. In contrast, naringin supplementation for 2 weeks significantly suppressed the ischemia-reperfusion-induced inflammatory process.
Discussion: The findings obtained from our research generally showed that, as a result of focal brain ischemia-reperfusion in rats, the levels of NF-κB, a key molecule involved in inflammatory pathways, as well as the pro-inflammatory cytokine IL-17 and caspase-3, an indicator of apoptosis, increased significantly in cerebellar tissue. However, intragastric naringin supplementation for two weeks following ischemia-reperfusion led to significant improvements in the adverse effects caused by the ischemic injury.
Conclusion: The study's results demonstrate that naringin treatment effectively mitigates inflammatory activation in the cerebellum following brain ischemia-reperfusion in rats.
期刊介绍:
Current Topics in Medicinal Chemistry is a forum for the review of areas of keen and topical interest to medicinal chemists and others in the allied disciplines. Each issue is solely devoted to a specific topic, containing six to nine reviews, which provide the reader a comprehensive survey of that area. A Guest Editor who is an expert in the topic under review, will assemble each issue. The scope of Current Topics in Medicinal Chemistry will cover all areas of medicinal chemistry, including current developments in rational drug design, synthetic chemistry, bioorganic chemistry, high-throughput screening, combinatorial chemistry, compound diversity measurements, drug absorption, drug distribution, metabolism, new and emerging drug targets, natural products, pharmacogenomics, and structure-activity relationships. Medicinal chemistry is a rapidly maturing discipline. The study of how structure and function are related is absolutely essential to understanding the molecular basis of life. Current Topics in Medicinal Chemistry aims to contribute to the growth of scientific knowledge and insight, and facilitate the discovery and development of new therapeutic agents to treat debilitating human disorders. The journal is essential for every medicinal chemist who wishes to be kept informed and up-to-date with the latest and most important advances.