{"title":"线粒体靶向治疗神经退行性疾病的纳米技术方法。","authors":"Ahmet Doğan Ergin","doi":"10.2174/0115680266397447250723073446","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>Mitochondria are dynamic organelles essential for energy metabolism and cellular homeostasis, playing critical roles in ATP production, calcium regulation, redox balance, and apoptosis. However, mitochondrial dysfunction is a central factor in the pathogenesis of neurodegenerative diseases, including Alzheimer's disease, amyotrophic lateral sclerosis, Huntington's disease, and Parkinson's disease. Given the essential role of mitochondria in neuronal survival, targeted therapeutic strategies that restore mitochondrial function have gained significant attention. This review explores the latest advances in mitochondrial-targeted therapies and their potential applications in neurodegenerative diseases.</p><p><strong>Methods: </strong>A comprehensive literature review was conducted on mitochondrial-targeted therapeutic strategies, with a focus on nanotechnology-based drug delivery systems. The analysis includes various nanoparticle-based approaches, such as liposomes, DQAsomes, and polymeric nanoparticles, which have demonstrated high biocompatibility, controlled drug release, and enhanced mitochondrial targeting efficiency. Additionally, mitochondria-penetrating peptides and delocalized lipophilic cations (DLCs) are discussed for their role in improving drug localization within mitochondria and overcoming biological barriers, including the blood-brain barrier (BBB).</p><p><strong>Results: </strong>Recent research shows the potential of mitochondrial-targeted antioxidants, peptides, and biocompatible nanocarriers in arranging mitochondrial dysfunction and protecting neurons from oxidative damage. Various nanoparticle-based drug delivery systems have demonstrated the ability to selectively target mitochondria, improving drug bioavailability, therapeutic efficacy, and neuroprotective outcomes in neurodegenerative diseases.</p><p><strong>Conclusion: </strong>Mitochondria-targeted therapies provide promising avenues for disease-modifying treatments aimed at preserving neuronal integrity and delaying disease progression. The unique properties of nanoparticles, such as their ability to enhance drug stability, facilitate controlled release, and achieve precise mitochondrial localization, make them valuable tools for neurodegenerative disease therapy. Future research should focus on optimizing delivery systems, validating clinical applicability, and exploring interdisciplinary approaches to accelerate translation into effective treatments.</p>","PeriodicalId":11076,"journal":{"name":"Current topics in medicinal chemistry","volume":" ","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2025-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nanotechnological Approaches for Mitochondrial Targeting in Neurodegenerative Diseases.\",\"authors\":\"Ahmet Doğan Ergin\",\"doi\":\"10.2174/0115680266397447250723073446\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objectives: </strong>Mitochondria are dynamic organelles essential for energy metabolism and cellular homeostasis, playing critical roles in ATP production, calcium regulation, redox balance, and apoptosis. However, mitochondrial dysfunction is a central factor in the pathogenesis of neurodegenerative diseases, including Alzheimer's disease, amyotrophic lateral sclerosis, Huntington's disease, and Parkinson's disease. Given the essential role of mitochondria in neuronal survival, targeted therapeutic strategies that restore mitochondrial function have gained significant attention. This review explores the latest advances in mitochondrial-targeted therapies and their potential applications in neurodegenerative diseases.</p><p><strong>Methods: </strong>A comprehensive literature review was conducted on mitochondrial-targeted therapeutic strategies, with a focus on nanotechnology-based drug delivery systems. The analysis includes various nanoparticle-based approaches, such as liposomes, DQAsomes, and polymeric nanoparticles, which have demonstrated high biocompatibility, controlled drug release, and enhanced mitochondrial targeting efficiency. Additionally, mitochondria-penetrating peptides and delocalized lipophilic cations (DLCs) are discussed for their role in improving drug localization within mitochondria and overcoming biological barriers, including the blood-brain barrier (BBB).</p><p><strong>Results: </strong>Recent research shows the potential of mitochondrial-targeted antioxidants, peptides, and biocompatible nanocarriers in arranging mitochondrial dysfunction and protecting neurons from oxidative damage. Various nanoparticle-based drug delivery systems have demonstrated the ability to selectively target mitochondria, improving drug bioavailability, therapeutic efficacy, and neuroprotective outcomes in neurodegenerative diseases.</p><p><strong>Conclusion: </strong>Mitochondria-targeted therapies provide promising avenues for disease-modifying treatments aimed at preserving neuronal integrity and delaying disease progression. The unique properties of nanoparticles, such as their ability to enhance drug stability, facilitate controlled release, and achieve precise mitochondrial localization, make them valuable tools for neurodegenerative disease therapy. Future research should focus on optimizing delivery systems, validating clinical applicability, and exploring interdisciplinary approaches to accelerate translation into effective treatments.</p>\",\"PeriodicalId\":11076,\"journal\":{\"name\":\"Current topics in medicinal chemistry\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2025-07-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current topics in medicinal chemistry\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.2174/0115680266397447250723073446\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current topics in medicinal chemistry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/0115680266397447250723073446","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
Nanotechnological Approaches for Mitochondrial Targeting in Neurodegenerative Diseases.
Objectives: Mitochondria are dynamic organelles essential for energy metabolism and cellular homeostasis, playing critical roles in ATP production, calcium regulation, redox balance, and apoptosis. However, mitochondrial dysfunction is a central factor in the pathogenesis of neurodegenerative diseases, including Alzheimer's disease, amyotrophic lateral sclerosis, Huntington's disease, and Parkinson's disease. Given the essential role of mitochondria in neuronal survival, targeted therapeutic strategies that restore mitochondrial function have gained significant attention. This review explores the latest advances in mitochondrial-targeted therapies and their potential applications in neurodegenerative diseases.
Methods: A comprehensive literature review was conducted on mitochondrial-targeted therapeutic strategies, with a focus on nanotechnology-based drug delivery systems. The analysis includes various nanoparticle-based approaches, such as liposomes, DQAsomes, and polymeric nanoparticles, which have demonstrated high biocompatibility, controlled drug release, and enhanced mitochondrial targeting efficiency. Additionally, mitochondria-penetrating peptides and delocalized lipophilic cations (DLCs) are discussed for their role in improving drug localization within mitochondria and overcoming biological barriers, including the blood-brain barrier (BBB).
Results: Recent research shows the potential of mitochondrial-targeted antioxidants, peptides, and biocompatible nanocarriers in arranging mitochondrial dysfunction and protecting neurons from oxidative damage. Various nanoparticle-based drug delivery systems have demonstrated the ability to selectively target mitochondria, improving drug bioavailability, therapeutic efficacy, and neuroprotective outcomes in neurodegenerative diseases.
Conclusion: Mitochondria-targeted therapies provide promising avenues for disease-modifying treatments aimed at preserving neuronal integrity and delaying disease progression. The unique properties of nanoparticles, such as their ability to enhance drug stability, facilitate controlled release, and achieve precise mitochondrial localization, make them valuable tools for neurodegenerative disease therapy. Future research should focus on optimizing delivery systems, validating clinical applicability, and exploring interdisciplinary approaches to accelerate translation into effective treatments.
期刊介绍:
Current Topics in Medicinal Chemistry is a forum for the review of areas of keen and topical interest to medicinal chemists and others in the allied disciplines. Each issue is solely devoted to a specific topic, containing six to nine reviews, which provide the reader a comprehensive survey of that area. A Guest Editor who is an expert in the topic under review, will assemble each issue. The scope of Current Topics in Medicinal Chemistry will cover all areas of medicinal chemistry, including current developments in rational drug design, synthetic chemistry, bioorganic chemistry, high-throughput screening, combinatorial chemistry, compound diversity measurements, drug absorption, drug distribution, metabolism, new and emerging drug targets, natural products, pharmacogenomics, and structure-activity relationships. Medicinal chemistry is a rapidly maturing discipline. The study of how structure and function are related is absolutely essential to understanding the molecular basis of life. Current Topics in Medicinal Chemistry aims to contribute to the growth of scientific knowledge and insight, and facilitate the discovery and development of new therapeutic agents to treat debilitating human disorders. The journal is essential for every medicinal chemist who wishes to be kept informed and up-to-date with the latest and most important advances.