色氨酸稳定金锰氧化物纳米复合材料增强超氧化物歧化酶活性。

IF 1.9 4区 医学 Q4 BIOPHYSICS
Biointerphases Pub Date : 2025-07-01 DOI:10.1116/6.0004563
Kanika Bharti, Kalyan K Sadhu
{"title":"色氨酸稳定金锰氧化物纳米复合材料增强超氧化物歧化酶活性。","authors":"Kanika Bharti, Kalyan K Sadhu","doi":"10.1116/6.0004563","DOIUrl":null,"url":null,"abstract":"<p><p>Syntheses of gold-manganese oxide nanocomposites were attempted by a redox-mediated growth method under varying mild reaction conditions with amino acid as a stabilization agent; finally, the nanocomposites were applied for superoxide dismutase (SOD)-mimic activity. Growth reaction was performed by the reduction of Au(III) with Mn(0) powder on the surface of citrate-stabilized gold nanoparticles as seeds. Variable reaction conditions were attempted to monitor the effect of the pH and, finally, optimized based on the critical properties of the nanocomposites including their long-term stability. In a neutral medium, tryptophan-stabilized Au-Mn3O4 nanocomposites were obtained. Stable Au-Mn2O3 nanocomposites were formed at basic pH in the presence of hydrophobic amino acids. The present work elucidates the role of amino acids, especially tryptophan, in stabilizing gold-manganese oxide nanocomposites. The effect of crystalline vs. the amorphous nature of Mn3O4 sheets in the tryptophan-stabilized nanocomposites was evaluated in SOD-mimetic applications. The IC50 values for the newly synthesized Au-Mn3O4 nanocomposites with crystalline or amorphous Mn3O4 sheets at room temperature were found to be 125 times and 25 times better with respect to the reported Mn3O4 nanoparticles synthesized after calcination at 600 °C. These results provide useful insights into the synthesis of gold-manganese oxide nanocomposites with tunable properties and their potential applications in the growing field of nanozymes.</p>","PeriodicalId":9053,"journal":{"name":"Biointerphases","volume":"20 4","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tryptophan-stabilized gold-manganese oxide nanocomposites for enhanced superoxide dismutase activity.\",\"authors\":\"Kanika Bharti, Kalyan K Sadhu\",\"doi\":\"10.1116/6.0004563\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Syntheses of gold-manganese oxide nanocomposites were attempted by a redox-mediated growth method under varying mild reaction conditions with amino acid as a stabilization agent; finally, the nanocomposites were applied for superoxide dismutase (SOD)-mimic activity. Growth reaction was performed by the reduction of Au(III) with Mn(0) powder on the surface of citrate-stabilized gold nanoparticles as seeds. Variable reaction conditions were attempted to monitor the effect of the pH and, finally, optimized based on the critical properties of the nanocomposites including their long-term stability. In a neutral medium, tryptophan-stabilized Au-Mn3O4 nanocomposites were obtained. Stable Au-Mn2O3 nanocomposites were formed at basic pH in the presence of hydrophobic amino acids. The present work elucidates the role of amino acids, especially tryptophan, in stabilizing gold-manganese oxide nanocomposites. The effect of crystalline vs. the amorphous nature of Mn3O4 sheets in the tryptophan-stabilized nanocomposites was evaluated in SOD-mimetic applications. The IC50 values for the newly synthesized Au-Mn3O4 nanocomposites with crystalline or amorphous Mn3O4 sheets at room temperature were found to be 125 times and 25 times better with respect to the reported Mn3O4 nanoparticles synthesized after calcination at 600 °C. These results provide useful insights into the synthesis of gold-manganese oxide nanocomposites with tunable properties and their potential applications in the growing field of nanozymes.</p>\",\"PeriodicalId\":9053,\"journal\":{\"name\":\"Biointerphases\",\"volume\":\"20 4\",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2025-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biointerphases\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1116/6.0004563\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biointerphases","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1116/6.0004563","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

以氨基酸为稳定剂,在不同的温和反应条件下,采用氧化还原介导生长的方法合成了金-氧化锰纳米复合材料;最后,将纳米复合材料应用于超氧化物歧化酶(SOD)模拟活性的研究。在柠檬酸盐稳定的金纳米粒子表面以Mn(0)粉末还原Au(III)作为种子进行生长反应。研究人员尝试了不同的反应条件来监测pH值的影响,并根据纳米复合材料的长期稳定性等关键性能对其进行了优化。在中性介质中,获得了色氨酸稳定的Au-Mn3O4纳米复合材料。在碱性pH下,在疏水氨基酸的存在下,形成了稳定的Au-Mn2O3纳米复合材料。本研究阐明了氨基酸,特别是色氨酸在稳定金-氧化锰纳米复合材料中的作用。在模拟sod的应用中,评估了色氨酸稳定纳米复合材料中Mn3O4片的结晶性和无定形性的影响。在室温下,与已有报道的600℃煅烧合成的纳米Mn3O4相比,用结晶或非晶Mn3O4片制备的Au-Mn3O4纳米复合材料的IC50值分别提高125倍和25倍。这些结果为具有可调性能的金锰氧化物纳米复合材料的合成及其在纳米酶生长领域的潜在应用提供了有益的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Tryptophan-stabilized gold-manganese oxide nanocomposites for enhanced superoxide dismutase activity.

Syntheses of gold-manganese oxide nanocomposites were attempted by a redox-mediated growth method under varying mild reaction conditions with amino acid as a stabilization agent; finally, the nanocomposites were applied for superoxide dismutase (SOD)-mimic activity. Growth reaction was performed by the reduction of Au(III) with Mn(0) powder on the surface of citrate-stabilized gold nanoparticles as seeds. Variable reaction conditions were attempted to monitor the effect of the pH and, finally, optimized based on the critical properties of the nanocomposites including their long-term stability. In a neutral medium, tryptophan-stabilized Au-Mn3O4 nanocomposites were obtained. Stable Au-Mn2O3 nanocomposites were formed at basic pH in the presence of hydrophobic amino acids. The present work elucidates the role of amino acids, especially tryptophan, in stabilizing gold-manganese oxide nanocomposites. The effect of crystalline vs. the amorphous nature of Mn3O4 sheets in the tryptophan-stabilized nanocomposites was evaluated in SOD-mimetic applications. The IC50 values for the newly synthesized Au-Mn3O4 nanocomposites with crystalline or amorphous Mn3O4 sheets at room temperature were found to be 125 times and 25 times better with respect to the reported Mn3O4 nanoparticles synthesized after calcination at 600 °C. These results provide useful insights into the synthesis of gold-manganese oxide nanocomposites with tunable properties and their potential applications in the growing field of nanozymes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biointerphases
Biointerphases 生物-材料科学:生物材料
自引率
0.00%
发文量
35
期刊介绍: Biointerphases emphasizes quantitative characterization of biomaterials and biological interfaces. As an interdisciplinary journal, a strong foundation of chemistry, physics, biology, engineering, theory, and/or modelling is incorporated into originated articles, reviews, and opinionated essays. In addition to regular submissions, the journal regularly features In Focus sections, targeted on specific topics and edited by experts in the field. Biointerphases is an international journal with excellence in scientific peer-review. Biointerphases is indexed in PubMed and the Science Citation Index (Clarivate Analytics). Accepted papers appear online immediately after proof processing and are uploaded to key citation sources daily. The journal is based on a mixed subscription and open-access model: Typically, authors can publish without any page charges but if the authors wish to publish open access, they can do so for a modest fee. Topics include: bio-surface modification nano-bio interface protein-surface interactions cell-surface interactions in vivo and in vitro systems biofilms / biofouling biosensors / biodiagnostics bio on a chip coatings interface spectroscopy biotribology / biorheology molecular recognition ambient diagnostic methods interface modelling adhesion phenomena.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信