研究生物膜-生物材料界面复杂动力学的分析方法。

IF 1.9 4区 医学 Q4 BIOPHYSICS
Biointerphases Pub Date : 2025-07-01 DOI:10.1116/6.0004613
Yunxing Li, Dipankar Koley
{"title":"研究生物膜-生物材料界面复杂动力学的分析方法。","authors":"Yunxing Li, Dipankar Koley","doi":"10.1116/6.0004613","DOIUrl":null,"url":null,"abstract":"<p><p>Biofilm-biomaterial interfaces have an important role in biofilm development and pose a critical challenge in healthcare, contributing to device failures and chronic infections that affect patient outcomes and healthcare economics. This review explores the complex dynamics of these interfaces, from initial protein adsorption through mature biofilm development, highlighting how bacteria and materials are involved in bidirectional interactions that determine both infection progression and material degradation. It also examines different advanced analytical methods for characterizing these dynamic biofilm-biomaterial interactions, with particular emphasis on the recent developments in electrochemical techniques (ion-selective electrodes, electrochemical impedance spectroscopy, and scanning electrochemical microscopy) that enable real-time monitoring of critical parameters such as pH, oxygen gradients, and metabolic activities, providing unique insights into biofilm heterogeneity and localized chemical changes. In addition, the review explores future developments in sensor technology and standardized protocols needed to accelerate biomaterial innovation, potentially transforming our approach to implant-associated infections through responsive surfaces that adapt to microbial challenges.</p>","PeriodicalId":9053,"journal":{"name":"Biointerphases","volume":"20 4","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analytical methods to study the complex dynamics of biofilm-biomaterial interfaces.\",\"authors\":\"Yunxing Li, Dipankar Koley\",\"doi\":\"10.1116/6.0004613\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Biofilm-biomaterial interfaces have an important role in biofilm development and pose a critical challenge in healthcare, contributing to device failures and chronic infections that affect patient outcomes and healthcare economics. This review explores the complex dynamics of these interfaces, from initial protein adsorption through mature biofilm development, highlighting how bacteria and materials are involved in bidirectional interactions that determine both infection progression and material degradation. It also examines different advanced analytical methods for characterizing these dynamic biofilm-biomaterial interactions, with particular emphasis on the recent developments in electrochemical techniques (ion-selective electrodes, electrochemical impedance spectroscopy, and scanning electrochemical microscopy) that enable real-time monitoring of critical parameters such as pH, oxygen gradients, and metabolic activities, providing unique insights into biofilm heterogeneity and localized chemical changes. In addition, the review explores future developments in sensor technology and standardized protocols needed to accelerate biomaterial innovation, potentially transforming our approach to implant-associated infections through responsive surfaces that adapt to microbial challenges.</p>\",\"PeriodicalId\":9053,\"journal\":{\"name\":\"Biointerphases\",\"volume\":\"20 4\",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2025-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biointerphases\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1116/6.0004613\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biointerphases","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1116/6.0004613","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

生物膜-生物材料界面在生物膜发育中发挥着重要作用,对医疗保健构成了重大挑战,导致设备故障和慢性感染,影响患者预后和医疗保健经济学。这篇综述探讨了这些界面的复杂动力学,从最初的蛋白质吸附到成熟的生物膜发育,强调了细菌和材料如何参与双向相互作用,决定了感染进展和材料降解。它还研究了用于表征这些动态生物膜-生物材料相互作用的不同先进分析方法,特别强调了电化学技术(离子选择电极、电化学阻抗谱和扫描电化学显微镜)的最新发展,这些技术能够实时监测关键参数,如pH值、氧梯度和代谢活动。提供对生物膜异质性和局部化学变化的独特见解。此外,本文还探讨了加速生物材料创新所需的传感器技术和标准化协议的未来发展,通过适应微生物挑战的响应表面,有可能改变我们治疗植入物相关感染的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Analytical methods to study the complex dynamics of biofilm-biomaterial interfaces.

Biofilm-biomaterial interfaces have an important role in biofilm development and pose a critical challenge in healthcare, contributing to device failures and chronic infections that affect patient outcomes and healthcare economics. This review explores the complex dynamics of these interfaces, from initial protein adsorption through mature biofilm development, highlighting how bacteria and materials are involved in bidirectional interactions that determine both infection progression and material degradation. It also examines different advanced analytical methods for characterizing these dynamic biofilm-biomaterial interactions, with particular emphasis on the recent developments in electrochemical techniques (ion-selective electrodes, electrochemical impedance spectroscopy, and scanning electrochemical microscopy) that enable real-time monitoring of critical parameters such as pH, oxygen gradients, and metabolic activities, providing unique insights into biofilm heterogeneity and localized chemical changes. In addition, the review explores future developments in sensor technology and standardized protocols needed to accelerate biomaterial innovation, potentially transforming our approach to implant-associated infections through responsive surfaces that adapt to microbial challenges.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biointerphases
Biointerphases 生物-材料科学:生物材料
自引率
0.00%
发文量
35
期刊介绍: Biointerphases emphasizes quantitative characterization of biomaterials and biological interfaces. As an interdisciplinary journal, a strong foundation of chemistry, physics, biology, engineering, theory, and/or modelling is incorporated into originated articles, reviews, and opinionated essays. In addition to regular submissions, the journal regularly features In Focus sections, targeted on specific topics and edited by experts in the field. Biointerphases is an international journal with excellence in scientific peer-review. Biointerphases is indexed in PubMed and the Science Citation Index (Clarivate Analytics). Accepted papers appear online immediately after proof processing and are uploaded to key citation sources daily. The journal is based on a mixed subscription and open-access model: Typically, authors can publish without any page charges but if the authors wish to publish open access, they can do so for a modest fee. Topics include: bio-surface modification nano-bio interface protein-surface interactions cell-surface interactions in vivo and in vitro systems biofilms / biofouling biosensors / biodiagnostics bio on a chip coatings interface spectroscopy biotribology / biorheology molecular recognition ambient diagnostic methods interface modelling adhesion phenomena.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信