通过整合通量平衡分析和代谢模型的计算管道识别结核分枝杆菌中的休眠相关酶。

IF 3.8 2区 化学 Q2 CHEMISTRY, APPLIED
Mohd Imran, Ahmed S Alshrari, Abida Khan
{"title":"通过整合通量平衡分析和代谢模型的计算管道识别结核分枝杆菌中的休眠相关酶。","authors":"Mohd Imran, Ahmed S Alshrari, Abida Khan","doi":"10.1007/s11030-025-11300-9","DOIUrl":null,"url":null,"abstract":"<p><p>Tuberculosis, caused by Mycobacterium tuberculosis (Mtb), remains a critical global health challenge due to rising drug resistance and the pathogen's ability to persist in hostile host environments. Identifying novel molecular targets that underlie Mtb's unique survival mechanisms is essential for developing more effective therapies. In this study, we developed an integrative computational pipeline combining genome-scale metabolic modeling, flux balance analysis (FBA), comparative genomics, and network-based prioritization to uncover metabolic vulnerabilities specific to Mtb. Comparative analysis with the reductively evolved Mycobacterium leprae revealed significant differences in pathways involved in pantothenate biosynthesis (PanB), peptidoglycan synthesis (GlmU), and branched-chain amino acid metabolism (IlvN). These targets were prioritized based on gene essentiality, dormancy-associated expression, druggability, and absence of human homologs to maximize therapeutic selectivity. Molecular docking, followed by MM-GBSA binding free energy calculations, identified high-affinity ligands from LifeChemicals and ChEMBL libraries interacting strongly with active-site residues. Molecular dynamics simulations were performed to further validate target engagement and ligand retention, revealing stable conformational behavior and persistent protein-ligand interactions across 300 ns. Similarly, metabolite flux analysis and pathway enrichment highlighted adaptive rewiring in glycine, serine, pyruvate, and nitrogen metabolism, reflecting Mtb's persistence strategies under host-imposed stress. This study provides a robust, generalizable pipeline for pathogen-specific drug target and ligand discovery and supports the rational development of new therapies against drug-resistant tuberculosis.</p>","PeriodicalId":708,"journal":{"name":"Molecular Diversity","volume":" ","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2025-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Identifying dormancy-associated enzymes in Mycobacterium tuberculosis through a computational pipeline integrating flux balance analysis and metabolic modeling.\",\"authors\":\"Mohd Imran, Ahmed S Alshrari, Abida Khan\",\"doi\":\"10.1007/s11030-025-11300-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Tuberculosis, caused by Mycobacterium tuberculosis (Mtb), remains a critical global health challenge due to rising drug resistance and the pathogen's ability to persist in hostile host environments. Identifying novel molecular targets that underlie Mtb's unique survival mechanisms is essential for developing more effective therapies. In this study, we developed an integrative computational pipeline combining genome-scale metabolic modeling, flux balance analysis (FBA), comparative genomics, and network-based prioritization to uncover metabolic vulnerabilities specific to Mtb. Comparative analysis with the reductively evolved Mycobacterium leprae revealed significant differences in pathways involved in pantothenate biosynthesis (PanB), peptidoglycan synthesis (GlmU), and branched-chain amino acid metabolism (IlvN). These targets were prioritized based on gene essentiality, dormancy-associated expression, druggability, and absence of human homologs to maximize therapeutic selectivity. Molecular docking, followed by MM-GBSA binding free energy calculations, identified high-affinity ligands from LifeChemicals and ChEMBL libraries interacting strongly with active-site residues. Molecular dynamics simulations were performed to further validate target engagement and ligand retention, revealing stable conformational behavior and persistent protein-ligand interactions across 300 ns. Similarly, metabolite flux analysis and pathway enrichment highlighted adaptive rewiring in glycine, serine, pyruvate, and nitrogen metabolism, reflecting Mtb's persistence strategies under host-imposed stress. This study provides a robust, generalizable pipeline for pathogen-specific drug target and ligand discovery and supports the rational development of new therapies against drug-resistant tuberculosis.</p>\",\"PeriodicalId\":708,\"journal\":{\"name\":\"Molecular Diversity\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2025-07-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Diversity\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1007/s11030-025-11300-9\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Diversity","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1007/s11030-025-11300-9","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

由结核分枝杆菌(Mtb)引起的结核病,由于耐药性上升和病原体在敌对宿主环境中持续存在的能力,仍然是一个重大的全球卫生挑战。确定结核分枝杆菌独特生存机制的新分子靶点对于开发更有效的治疗方法至关重要。在这项研究中,我们开发了一个综合计算管道,将基因组尺度代谢建模、通量平衡分析(FBA)、比较基因组学和基于网络的优先级结合起来,以揭示结核分枝杆菌特有的代谢脆弱性。通过与还原进化的麻风分枝杆菌的比较分析,发现其参与泛酸生物合成(PanB)、肽聚糖合成(GlmU)和支链氨基酸代谢(IlvN)的途径存在显著差异。这些靶点是根据基因的重要性、休眠相关的表达、可药物性和缺乏人类同源物来最大化治疗选择性的。分子对接,随后进行MM-GBSA结合自由能计算,从lifecchemicals和ChEMBL文库中鉴定出与活性位点残基强相互作用的高亲和力配体。分子动力学模拟进一步验证了靶结合和配体保留,揭示了300 ns内稳定的构象行为和持续的蛋白质配体相互作用。同样,代谢物通量分析和途径富集强调了甘氨酸、丝氨酸、丙酮酸和氮代谢的适应性重新布线,反映了Mtb在宿主施加的胁迫下的持久性策略。这项研究为发现病原体特异性药物靶点和配体提供了一个强大的、可推广的途径,并支持合理开发针对耐药结核病的新疗法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Identifying dormancy-associated enzymes in Mycobacterium tuberculosis through a computational pipeline integrating flux balance analysis and metabolic modeling.

Tuberculosis, caused by Mycobacterium tuberculosis (Mtb), remains a critical global health challenge due to rising drug resistance and the pathogen's ability to persist in hostile host environments. Identifying novel molecular targets that underlie Mtb's unique survival mechanisms is essential for developing more effective therapies. In this study, we developed an integrative computational pipeline combining genome-scale metabolic modeling, flux balance analysis (FBA), comparative genomics, and network-based prioritization to uncover metabolic vulnerabilities specific to Mtb. Comparative analysis with the reductively evolved Mycobacterium leprae revealed significant differences in pathways involved in pantothenate biosynthesis (PanB), peptidoglycan synthesis (GlmU), and branched-chain amino acid metabolism (IlvN). These targets were prioritized based on gene essentiality, dormancy-associated expression, druggability, and absence of human homologs to maximize therapeutic selectivity. Molecular docking, followed by MM-GBSA binding free energy calculations, identified high-affinity ligands from LifeChemicals and ChEMBL libraries interacting strongly with active-site residues. Molecular dynamics simulations were performed to further validate target engagement and ligand retention, revealing stable conformational behavior and persistent protein-ligand interactions across 300 ns. Similarly, metabolite flux analysis and pathway enrichment highlighted adaptive rewiring in glycine, serine, pyruvate, and nitrogen metabolism, reflecting Mtb's persistence strategies under host-imposed stress. This study provides a robust, generalizable pipeline for pathogen-specific drug target and ligand discovery and supports the rational development of new therapies against drug-resistant tuberculosis.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Molecular Diversity
Molecular Diversity 化学-化学综合
CiteScore
7.30
自引率
7.90%
发文量
219
审稿时长
2.7 months
期刊介绍: Molecular Diversity is a new publication forum for the rapid publication of refereed papers dedicated to describing the development, application and theory of molecular diversity and combinatorial chemistry in basic and applied research and drug discovery. The journal publishes both short and full papers, perspectives, news and reviews dealing with all aspects of the generation of molecular diversity, application of diversity for screening against alternative targets of all types (biological, biophysical, technological), analysis of results obtained and their application in various scientific disciplines/approaches including: combinatorial chemistry and parallel synthesis; small molecule libraries; microwave synthesis; flow synthesis; fluorous synthesis; diversity oriented synthesis (DOS); nanoreactors; click chemistry; multiplex technologies; fragment- and ligand-based design; structure/function/SAR; computational chemistry and molecular design; chemoinformatics; screening techniques and screening interfaces; analytical and purification methods; robotics, automation and miniaturization; targeted libraries; display libraries; peptides and peptoids; proteins; oligonucleotides; carbohydrates; natural diversity; new methods of library formulation and deconvolution; directed evolution, origin of life and recombination; search techniques, landscapes, random chemistry and more;
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信