自组装Ti3C2Tx MXene超晶格用于未来的涡旋应用。

IF 14.1 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Kuanysh Zhussupbekov, Andrea Cabero Del Hierro, Samuel Berman, Dahnan Spurling, Ainur Zhussupbekova, Stefano Ippolito, David D O'Regan, Igor Shvets, Yury Gogotsi, Valeria Nicolosi
{"title":"自组装Ti3C2Tx MXene超晶格用于未来的涡旋应用。","authors":"Kuanysh Zhussupbekov, Andrea Cabero Del Hierro, Samuel Berman, Dahnan Spurling, Ainur Zhussupbekova, Stefano Ippolito, David D O'Regan, Igor Shvets, Yury Gogotsi, Valeria Nicolosi","doi":"10.1002/advs.202504394","DOIUrl":null,"url":null,"abstract":"<p><p>Nanoscale periodic Moiré superlattices based on 2D heterostructures offer an opportunity to unveil and exploit electronic and quantum properties that are not present in single-layer 2D and/or 3D bulk counterparts. However, a detailed understanding of the Moiré superlattices and their resulting electronic structure at the atomic scale is currently lacking in many systems, such as the fastest-growing family of 2D materials, MXenes. This is crucial for gaining fundamental knowledge and mastery over quantum phenomena in these materials. This study thoroughly examines and compares the self-assembled Moiré superlattices of the most prominent MXene, Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub>, by combining experimental scanning tunneling microscopy and spectroscopy with density functional theory calculations. Three distinct self-assembled Moiré patterns with a periodicity of 2.52, 2.39, and 1.25 nm are investigated. Experimental and theoretical data reveal that the Moiré superlattice with a periodicity of 1.25 nm exhibits a spatial modulation of the density of states in the conduction band due to electronic interlayer coupling effects. The findings unveil MXene Moiré superlattices at the atomic level and pave the way to a new research field in MXetronics and twistronics with great potential for quantum devices and related applications.</p>","PeriodicalId":117,"journal":{"name":"Advanced Science","volume":" ","pages":"e04394"},"PeriodicalIF":14.1000,"publicationDate":"2025-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Self-Assembled Moiré Superlattices of Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub> MXene for Future Twistronic Applications.\",\"authors\":\"Kuanysh Zhussupbekov, Andrea Cabero Del Hierro, Samuel Berman, Dahnan Spurling, Ainur Zhussupbekova, Stefano Ippolito, David D O'Regan, Igor Shvets, Yury Gogotsi, Valeria Nicolosi\",\"doi\":\"10.1002/advs.202504394\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Nanoscale periodic Moiré superlattices based on 2D heterostructures offer an opportunity to unveil and exploit electronic and quantum properties that are not present in single-layer 2D and/or 3D bulk counterparts. However, a detailed understanding of the Moiré superlattices and their resulting electronic structure at the atomic scale is currently lacking in many systems, such as the fastest-growing family of 2D materials, MXenes. This is crucial for gaining fundamental knowledge and mastery over quantum phenomena in these materials. This study thoroughly examines and compares the self-assembled Moiré superlattices of the most prominent MXene, Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub>, by combining experimental scanning tunneling microscopy and spectroscopy with density functional theory calculations. Three distinct self-assembled Moiré patterns with a periodicity of 2.52, 2.39, and 1.25 nm are investigated. Experimental and theoretical data reveal that the Moiré superlattice with a periodicity of 1.25 nm exhibits a spatial modulation of the density of states in the conduction band due to electronic interlayer coupling effects. The findings unveil MXene Moiré superlattices at the atomic level and pave the way to a new research field in MXetronics and twistronics with great potential for quantum devices and related applications.</p>\",\"PeriodicalId\":117,\"journal\":{\"name\":\"Advanced Science\",\"volume\":\" \",\"pages\":\"e04394\"},\"PeriodicalIF\":14.1000,\"publicationDate\":\"2025-07-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Science\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/advs.202504394\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Science","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/advs.202504394","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

基于二维异质结构的纳米级周期性莫尔维尔超晶格提供了一个揭示和利用单层二维和/或三维块体中不存在的电子和量子特性的机会。然而,目前在许多系统中,如发展最快的二维材料家族MXenes,缺乏对莫尔维尔超晶格及其在原子尺度上产生的电子结构的详细了解。这对于获得这些材料中的量子现象的基本知识和掌握至关重要。本研究结合实验扫描隧道显微镜、光谱学和密度泛函理论计算,对最突出的MXene Ti3C2Tx的自组装moir超晶格进行了全面的研究和比较。研究了三种周期性分别为2.52、2.39和1.25 nm的自组装莫尔条纹。实验和理论数据表明,周期为1.25 nm的莫尔维尔超晶格由于电子层间耦合效应而表现出导带态密度的空间调制。这一发现在原子水平上揭示了MXene moir超晶格,并为MXene电子学和涡旋电子学的一个新的研究领域铺平了道路,该领域具有巨大的量子器件和相关应用潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Self-Assembled Moiré Superlattices of Ti3C2Tx MXene for Future Twistronic Applications.

Nanoscale periodic Moiré superlattices based on 2D heterostructures offer an opportunity to unveil and exploit electronic and quantum properties that are not present in single-layer 2D and/or 3D bulk counterparts. However, a detailed understanding of the Moiré superlattices and their resulting electronic structure at the atomic scale is currently lacking in many systems, such as the fastest-growing family of 2D materials, MXenes. This is crucial for gaining fundamental knowledge and mastery over quantum phenomena in these materials. This study thoroughly examines and compares the self-assembled Moiré superlattices of the most prominent MXene, Ti3C2Tx, by combining experimental scanning tunneling microscopy and spectroscopy with density functional theory calculations. Three distinct self-assembled Moiré patterns with a periodicity of 2.52, 2.39, and 1.25 nm are investigated. Experimental and theoretical data reveal that the Moiré superlattice with a periodicity of 1.25 nm exhibits a spatial modulation of the density of states in the conduction band due to electronic interlayer coupling effects. The findings unveil MXene Moiré superlattices at the atomic level and pave the way to a new research field in MXetronics and twistronics with great potential for quantum devices and related applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Science
Advanced Science CHEMISTRY, MULTIDISCIPLINARYNANOSCIENCE &-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
18.90
自引率
2.60%
发文量
1602
审稿时长
1.9 months
期刊介绍: Advanced Science is a prestigious open access journal that focuses on interdisciplinary research in materials science, physics, chemistry, medical and life sciences, and engineering. The journal aims to promote cutting-edge research by employing a rigorous and impartial review process. It is committed to presenting research articles with the highest quality production standards, ensuring maximum accessibility of top scientific findings. With its vibrant and innovative publication platform, Advanced Science seeks to revolutionize the dissemination and organization of scientific knowledge.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信