真菌网络在土壤微观实验中约束微动物刺激的氮矿化

Reza Ghaderi, Helen L. Hayden, Ramesha H. Jayaramaiah, Thi Bao Anh Nguyen, Hang-Wei Hu, Ji-Zheng He
{"title":"真菌网络在土壤微观实验中约束微动物刺激的氮矿化","authors":"Reza Ghaderi,&nbsp;Helen L. Hayden,&nbsp;Ramesha H. Jayaramaiah,&nbsp;Thi Bao Anh Nguyen,&nbsp;Hang-Wei Hu,&nbsp;Ji-Zheng He","doi":"10.1002/sae2.70081","DOIUrl":null,"url":null,"abstract":"<p>Soil microfauna are recognised as key regulators of nitrogen (N) transformations, primarily through grazing and translocation mechanisms. The interactions between soil microorganisms and their microfaunal grazers play a crucial role in controlling N mineralisation and immobilisation processes. Despite the well-established role of bacterivore nematodes and other microbial grazers in enhancing N mineralisation, the extent to which these organisms contribute to overall nutrient cycling within fungal-dominated systems remains unclear. In a non-amended soil microcosm experiment, we investigated microorganisms-microfauna interaction using morphological observations, quantitative polymerase chain reaction and high-fthroughput sequencing. Our findings indicate that microbial grazing by microfauna did not enhance N mineralisation contrary to our hypothesis, despite an increase in bacterial grazers and bacterial abundance compared to the defaunated control. Instead, we observed a dominant fungal-driven N immobilisation process, as evidenced by the increased presence of saprophytic fungi, fungivore nematodes, and a high nematode channel index. The absolute abundance of fungal communities, particularly members of the Sordariomycetes class, further supports the hypothesis that fungi play a central role in regulating N transformations. These results challenge the conventional assumption that microfauna-driven bacterial turnover leads to enhanced N availability and highlight the significant role of fungal networks in N retention.</p>","PeriodicalId":100834,"journal":{"name":"Journal of Sustainable Agriculture and Environment","volume":"4 3","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/sae2.70081","citationCount":"0","resultStr":"{\"title\":\"Fungal Networks Constrain Microfauna-Stimulated Nitrogen Mineralisation in a Soil Microcosm Experiment\",\"authors\":\"Reza Ghaderi,&nbsp;Helen L. Hayden,&nbsp;Ramesha H. Jayaramaiah,&nbsp;Thi Bao Anh Nguyen,&nbsp;Hang-Wei Hu,&nbsp;Ji-Zheng He\",\"doi\":\"10.1002/sae2.70081\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Soil microfauna are recognised as key regulators of nitrogen (N) transformations, primarily through grazing and translocation mechanisms. The interactions between soil microorganisms and their microfaunal grazers play a crucial role in controlling N mineralisation and immobilisation processes. Despite the well-established role of bacterivore nematodes and other microbial grazers in enhancing N mineralisation, the extent to which these organisms contribute to overall nutrient cycling within fungal-dominated systems remains unclear. In a non-amended soil microcosm experiment, we investigated microorganisms-microfauna interaction using morphological observations, quantitative polymerase chain reaction and high-fthroughput sequencing. Our findings indicate that microbial grazing by microfauna did not enhance N mineralisation contrary to our hypothesis, despite an increase in bacterial grazers and bacterial abundance compared to the defaunated control. Instead, we observed a dominant fungal-driven N immobilisation process, as evidenced by the increased presence of saprophytic fungi, fungivore nematodes, and a high nematode channel index. The absolute abundance of fungal communities, particularly members of the Sordariomycetes class, further supports the hypothesis that fungi play a central role in regulating N transformations. These results challenge the conventional assumption that microfauna-driven bacterial turnover leads to enhanced N availability and highlight the significant role of fungal networks in N retention.</p>\",\"PeriodicalId\":100834,\"journal\":{\"name\":\"Journal of Sustainable Agriculture and Environment\",\"volume\":\"4 3\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/sae2.70081\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Sustainable Agriculture and Environment\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/sae2.70081\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Sustainable Agriculture and Environment","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/sae2.70081","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

土壤微动物被认为是氮(N)转化的关键调节器,主要通过放牧和转运机制。土壤微生物与其微食草动物之间的相互作用在控制氮矿化和固定过程中起着至关重要的作用。尽管细菌线虫和其他微生物食草动物在促进N矿化方面的作用已经确立,但这些生物在真菌主导的系统中对整体营养循环的贡献程度仍不清楚。在一个未经改良的土壤微观环境实验中,我们利用形态学观察、定量聚合酶链反应和高通量测序研究了微生物与微动物群的相互作用。我们的研究结果表明,与我们的假设相反,微动物的微生物放牧并没有增强N矿化,尽管与退化的对照相比,细菌食草动物和细菌丰度增加了。相反,我们观察到真菌主导的氮固定过程,腐生真菌、食真菌线虫和高线虫通道指数的存在增加证明了这一点。真菌群落的绝对丰度,特别是sordariomyetes类的成员,进一步支持真菌在调节N转化中起核心作用的假设。这些结果挑战了传统的假设,即微动物驱动的细菌周转导致氮的有效性增强,并强调了真菌网络在氮保留中的重要作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Fungal Networks Constrain Microfauna-Stimulated Nitrogen Mineralisation in a Soil Microcosm Experiment

Fungal Networks Constrain Microfauna-Stimulated Nitrogen Mineralisation in a Soil Microcosm Experiment

Soil microfauna are recognised as key regulators of nitrogen (N) transformations, primarily through grazing and translocation mechanisms. The interactions between soil microorganisms and their microfaunal grazers play a crucial role in controlling N mineralisation and immobilisation processes. Despite the well-established role of bacterivore nematodes and other microbial grazers in enhancing N mineralisation, the extent to which these organisms contribute to overall nutrient cycling within fungal-dominated systems remains unclear. In a non-amended soil microcosm experiment, we investigated microorganisms-microfauna interaction using morphological observations, quantitative polymerase chain reaction and high-fthroughput sequencing. Our findings indicate that microbial grazing by microfauna did not enhance N mineralisation contrary to our hypothesis, despite an increase in bacterial grazers and bacterial abundance compared to the defaunated control. Instead, we observed a dominant fungal-driven N immobilisation process, as evidenced by the increased presence of saprophytic fungi, fungivore nematodes, and a high nematode channel index. The absolute abundance of fungal communities, particularly members of the Sordariomycetes class, further supports the hypothesis that fungi play a central role in regulating N transformations. These results challenge the conventional assumption that microfauna-driven bacterial turnover leads to enhanced N availability and highlight the significant role of fungal networks in N retention.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.60
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信