Jacobi-Eisenstein级数的Petersson范数和Gross-Kohnen-Zagier公式

IF 0.8 3区 数学 Q2 MATHEMATICS
Mathematika Pub Date : 2025-07-31 DOI:10.1112/mtk.70032
Shuichi Hayashida, Yoshinori Mizuno
{"title":"Jacobi-Eisenstein级数的Petersson范数和Gross-Kohnen-Zagier公式","authors":"Shuichi Hayashida,&nbsp;Yoshinori Mizuno","doi":"10.1112/mtk.70032","DOIUrl":null,"url":null,"abstract":"<p>A regularized Petersson inner product on the space of Jacobi forms is defined and the regularized Petersson norms of Jacobi–Eisenstein series are computed. We use this result to establish Gross–Kohnen–Zagier's formula for Eisenstein series. In addition, we give an answer to the question raised by Böcherer and Das asking whether the regularized norm of Jacobi–Eisenstein series defined by them is non-zero. In the Supporting Information, we compute the Fourier coefficients of a suitable “new” basis of the space of Jacobi–Eisenstein series and give a remark on the proportional constant of the inner product formula in the theory of Jacobi forms.</p>","PeriodicalId":18463,"journal":{"name":"Mathematika","volume":"71 4","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2025-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Petersson norms of Jacobi–Eisenstein series and Gross–Kohnen–Zagier's formula\",\"authors\":\"Shuichi Hayashida,&nbsp;Yoshinori Mizuno\",\"doi\":\"10.1112/mtk.70032\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>A regularized Petersson inner product on the space of Jacobi forms is defined and the regularized Petersson norms of Jacobi–Eisenstein series are computed. We use this result to establish Gross–Kohnen–Zagier's formula for Eisenstein series. In addition, we give an answer to the question raised by Böcherer and Das asking whether the regularized norm of Jacobi–Eisenstein series defined by them is non-zero. In the Supporting Information, we compute the Fourier coefficients of a suitable “new” basis of the space of Jacobi–Eisenstein series and give a remark on the proportional constant of the inner product formula in the theory of Jacobi forms.</p>\",\"PeriodicalId\":18463,\"journal\":{\"name\":\"Mathematika\",\"volume\":\"71 4\",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2025-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematika\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://londmathsoc.onlinelibrary.wiley.com/doi/10.1112/mtk.70032\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematika","FirstCategoryId":"100","ListUrlMain":"https://londmathsoc.onlinelibrary.wiley.com/doi/10.1112/mtk.70032","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

定义了Jacobi形式空间上的正则Petersson内积,计算了Jacobi - eisenstein级数的正则Petersson范数。我们利用这个结果建立了爱森斯坦级数的Gross-Kohnen-Zagier公式。另外,对Böcherer和Das提出的Jacobi-Eisenstein级数的正则化范数是否为非零的问题给出了回答。在支持信息中,我们计算了Jacobi - eisenstein级数空间中合适的“新”基的傅里叶系数,并对Jacobi形式理论中内积公式的比例常数作了注解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Petersson norms of Jacobi–Eisenstein series and Gross–Kohnen–Zagier's formula

Petersson norms of Jacobi–Eisenstein series and Gross–Kohnen–Zagier's formula

Petersson norms of Jacobi–Eisenstein series and Gross–Kohnen–Zagier's formula

A regularized Petersson inner product on the space of Jacobi forms is defined and the regularized Petersson norms of Jacobi–Eisenstein series are computed. We use this result to establish Gross–Kohnen–Zagier's formula for Eisenstein series. In addition, we give an answer to the question raised by Böcherer and Das asking whether the regularized norm of Jacobi–Eisenstein series defined by them is non-zero. In the Supporting Information, we compute the Fourier coefficients of a suitable “new” basis of the space of Jacobi–Eisenstein series and give a remark on the proportional constant of the inner product formula in the theory of Jacobi forms.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Mathematika
Mathematika MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
1.40
自引率
0.00%
发文量
60
审稿时长
>12 weeks
期刊介绍: Mathematika publishes both pure and applied mathematical articles and has done so continuously since its founding by Harold Davenport in the 1950s. The traditional emphasis has been towards the purer side of mathematics but applied mathematics and articles addressing both aspects are equally welcome. The journal is published by the London Mathematical Society, on behalf of its owner University College London, and will continue to publish research papers of the highest mathematical quality.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信