基于无监督学习的多域电磁分析物理信息神经网络

IF 1.5 4区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Bingkuan Wan, Gang Lei, Youguang Guo, Jianguo Zhu
{"title":"基于无监督学习的多域电磁分析物理信息神经网络","authors":"Bingkuan Wan,&nbsp;Gang Lei,&nbsp;Youguang Guo,&nbsp;Jianguo Zhu","doi":"10.1049/elp2.70083","DOIUrl":null,"url":null,"abstract":"<p>Physics-informed neural networks (PINNs) have attracted much attention recently due to their unique advantages, such as directly fitting the strong form of partial differential equations (PDEs) and not requiring a mesh. These advantages make them suitable for solving numerical analysis problems of complex three-dimensional shapes. Since supervised-learning-based PINNs rely on the solutions obtained from traditional numerical methods, they should be regarded as performing function fitting or numerical approximation rather than truly solving a numerical computation problem. On the other hand, PINNs based on unsupervised learning can successfully solve single-domain electromagnetic analysis problems without access to the value of the physical quantity, which can be considered the ground truth. However, they cannot solve the multidomain electromagnetic analysis problem because they cannot fit the physical quantity at the interface. If the solution at the interface is unknown, PINNs can only enforce the continuity of values at the interface. Still, they cannot express the relationship between the gradients at the interface. To address this problem, this research proposes a novel numerical analysis method that employs PINNs based on unsupervised learning to solve multidomain problems. The discretised direct boundary integral equations are utilised to solve the physical quantity at the interface, and the multidomain problem can be transformed into multiple single-domain problems. Then, PINNs based on unsupervised learning can be utilised to solve all the subdomains. The feasibility of the proposed method is demonstrated through single-domain and multidomain electrostatic box problems as well as the testing electromagnetic analysis methods (TEAM) problem 22. Finally, the results of finite element analysis (FEA), boundary element method (BEM) and PINN based on unsupervised learning are compared, and the accuracy of the proposed method is proved. The FEM and analytical solutions of TEAM problem 22 are compared and discussed to confirm the accuracy of the presented numerical method.</p>","PeriodicalId":13352,"journal":{"name":"Iet Electric Power Applications","volume":"19 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2025-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/elp2.70083","citationCount":"0","resultStr":"{\"title\":\"Physics-Informed Neural Networks Based on Unsupervised Learning for Multidomain Electromagnetic Analysis\",\"authors\":\"Bingkuan Wan,&nbsp;Gang Lei,&nbsp;Youguang Guo,&nbsp;Jianguo Zhu\",\"doi\":\"10.1049/elp2.70083\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Physics-informed neural networks (PINNs) have attracted much attention recently due to their unique advantages, such as directly fitting the strong form of partial differential equations (PDEs) and not requiring a mesh. These advantages make them suitable for solving numerical analysis problems of complex three-dimensional shapes. Since supervised-learning-based PINNs rely on the solutions obtained from traditional numerical methods, they should be regarded as performing function fitting or numerical approximation rather than truly solving a numerical computation problem. On the other hand, PINNs based on unsupervised learning can successfully solve single-domain electromagnetic analysis problems without access to the value of the physical quantity, which can be considered the ground truth. However, they cannot solve the multidomain electromagnetic analysis problem because they cannot fit the physical quantity at the interface. If the solution at the interface is unknown, PINNs can only enforce the continuity of values at the interface. Still, they cannot express the relationship between the gradients at the interface. To address this problem, this research proposes a novel numerical analysis method that employs PINNs based on unsupervised learning to solve multidomain problems. The discretised direct boundary integral equations are utilised to solve the physical quantity at the interface, and the multidomain problem can be transformed into multiple single-domain problems. Then, PINNs based on unsupervised learning can be utilised to solve all the subdomains. The feasibility of the proposed method is demonstrated through single-domain and multidomain electrostatic box problems as well as the testing electromagnetic analysis methods (TEAM) problem 22. Finally, the results of finite element analysis (FEA), boundary element method (BEM) and PINN based on unsupervised learning are compared, and the accuracy of the proposed method is proved. The FEM and analytical solutions of TEAM problem 22 are compared and discussed to confirm the accuracy of the presented numerical method.</p>\",\"PeriodicalId\":13352,\"journal\":{\"name\":\"Iet Electric Power Applications\",\"volume\":\"19 1\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2025-07-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1049/elp2.70083\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Iet Electric Power Applications\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ietresearch.onlinelibrary.wiley.com/doi/10.1049/elp2.70083\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iet Electric Power Applications","FirstCategoryId":"5","ListUrlMain":"https://ietresearch.onlinelibrary.wiley.com/doi/10.1049/elp2.70083","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

物理信息神经网络(pinn)由于其独特的优势,如直接拟合偏微分方程(PDEs)的强形式,而不需要网格,最近引起了人们的广泛关注。这些优点使其适用于求解复杂三维形状的数值分析问题。由于基于监督学习的pin网络依赖于传统数值方法得到的解,因此应该将其视为函数拟合或数值逼近,而不是真正解决数值计算问题。另一方面,基于无监督学习的pinn可以成功地解决单域电磁分析问题,而不需要访问物理量的值,这可以被认为是基础真理。但由于不能拟合界面处的物理量,无法解决多域电磁分析问题。如果在接口处的解是未知的,则pin只能在接口处强制值的连续性。然而,它们不能表达界面上梯度之间的关系。为了解决这一问题,本研究提出了一种新的数值分析方法,该方法采用基于无监督学习的pinn来求解多域问题。利用离散的直接边界积分方程求解界面处的物理量,将多域问题转化为多个单域问题。然后,可以利用基于无监督学习的pin来求解所有子域。通过单域和多域静电箱问题以及测试电磁分析方法(TEAM)问题22验证了该方法的可行性。最后,比较了有限元分析(FEA)、边界元法(BEM)和基于无监督学习的PINN方法的结果,证明了所提方法的准确性。对TEAM问题22的有限元解和解析解进行了比较和讨论,以验证所提出数值方法的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Physics-Informed Neural Networks Based on Unsupervised Learning for Multidomain Electromagnetic Analysis

Physics-Informed Neural Networks Based on Unsupervised Learning for Multidomain Electromagnetic Analysis

Physics-Informed Neural Networks Based on Unsupervised Learning for Multidomain Electromagnetic Analysis

Physics-Informed Neural Networks Based on Unsupervised Learning for Multidomain Electromagnetic Analysis

Physics-Informed Neural Networks Based on Unsupervised Learning for Multidomain Electromagnetic Analysis

Physics-informed neural networks (PINNs) have attracted much attention recently due to their unique advantages, such as directly fitting the strong form of partial differential equations (PDEs) and not requiring a mesh. These advantages make them suitable for solving numerical analysis problems of complex three-dimensional shapes. Since supervised-learning-based PINNs rely on the solutions obtained from traditional numerical methods, they should be regarded as performing function fitting or numerical approximation rather than truly solving a numerical computation problem. On the other hand, PINNs based on unsupervised learning can successfully solve single-domain electromagnetic analysis problems without access to the value of the physical quantity, which can be considered the ground truth. However, they cannot solve the multidomain electromagnetic analysis problem because they cannot fit the physical quantity at the interface. If the solution at the interface is unknown, PINNs can only enforce the continuity of values at the interface. Still, they cannot express the relationship between the gradients at the interface. To address this problem, this research proposes a novel numerical analysis method that employs PINNs based on unsupervised learning to solve multidomain problems. The discretised direct boundary integral equations are utilised to solve the physical quantity at the interface, and the multidomain problem can be transformed into multiple single-domain problems. Then, PINNs based on unsupervised learning can be utilised to solve all the subdomains. The feasibility of the proposed method is demonstrated through single-domain and multidomain electrostatic box problems as well as the testing electromagnetic analysis methods (TEAM) problem 22. Finally, the results of finite element analysis (FEA), boundary element method (BEM) and PINN based on unsupervised learning are compared, and the accuracy of the proposed method is proved. The FEM and analytical solutions of TEAM problem 22 are compared and discussed to confirm the accuracy of the presented numerical method.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Iet Electric Power Applications
Iet Electric Power Applications 工程技术-工程:电子与电气
CiteScore
4.80
自引率
5.90%
发文量
104
审稿时长
3 months
期刊介绍: IET Electric Power Applications publishes papers of a high technical standard with a suitable balance of practice and theory. The scope covers a wide range of applications and apparatus in the power field. In addition to papers focussing on the design and development of electrical equipment, papers relying on analysis are also sought, provided that the arguments are conveyed succinctly and the conclusions are clear. The scope of the journal includes the following: The design and analysis of motors and generators of all sizes Rotating electrical machines Linear machines Actuators Power transformers Railway traction machines and drives Variable speed drives Machines and drives for electrically powered vehicles Industrial and non-industrial applications and processes Current Special Issue. Call for papers: Progress in Electric Machines, Power Converters and their Control for Wave Energy Generation - https://digital-library.theiet.org/files/IET_EPA_CFP_PEMPCCWEG.pdf
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信