Nada El Bouharrouti, Alireza Nemat Saberi, Muhammad Dayyan Hussain Khan, Karolina Kudelina, Muhammad U. Naseer, Anouar Belahcen
{"title":"基于电流信号滤波时频表示的深度迁移学习方法在感应电机轴承故障检测中的应用","authors":"Nada El Bouharrouti, Alireza Nemat Saberi, Muhammad Dayyan Hussain Khan, Karolina Kudelina, Muhammad U. Naseer, Anouar Belahcen","doi":"10.1049/elp2.70074","DOIUrl":null,"url":null,"abstract":"<p>This paper addresses the challenge of limited labelled data in induction machine fault diagnosis by applying deep transfer learning with convolutional neural networks to classify ball bearing health conditions. Specifically, the objective is to classify ring and cage failures in ball bearings using a limited dataset acquired from an experimental test bench. Unlike traditional approaches that rely on vibration sensors, this study uses noninvasive current signals. Moreover, this study introduces a novel preprocessing approach that filters out the fundamental frequency of the current signal to enhance fault-related harmonics in time–frequency representations generated via continuous wavelet transform and short-time Fourier transform. Five pre-trained convolutional neural networks—ResNet18, ResNet50, VGG16, AlexNet and GoogLeNet—are fine-tuned on these representations, demonstrating up to a 47% improvement in classification accuracy. Furthermore, the approach maintains high accuracy even with only 10% of the original dataset, showcasing its sample efficiency. This work contributes to a scalable and data-efficient solution for reliable condition monitoring in industrial settings, further advancing the use of current signals for fault diagnosis.</p>","PeriodicalId":13352,"journal":{"name":"Iet Electric Power Applications","volume":"19 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2025-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/elp2.70074","citationCount":"0","resultStr":"{\"title\":\"Deep Transfer Learning Approach Using Filtered Time-Frequency Representations of Current Signals for Bearing Fault Detection in Induction Machines\",\"authors\":\"Nada El Bouharrouti, Alireza Nemat Saberi, Muhammad Dayyan Hussain Khan, Karolina Kudelina, Muhammad U. Naseer, Anouar Belahcen\",\"doi\":\"10.1049/elp2.70074\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This paper addresses the challenge of limited labelled data in induction machine fault diagnosis by applying deep transfer learning with convolutional neural networks to classify ball bearing health conditions. Specifically, the objective is to classify ring and cage failures in ball bearings using a limited dataset acquired from an experimental test bench. Unlike traditional approaches that rely on vibration sensors, this study uses noninvasive current signals. Moreover, this study introduces a novel preprocessing approach that filters out the fundamental frequency of the current signal to enhance fault-related harmonics in time–frequency representations generated via continuous wavelet transform and short-time Fourier transform. Five pre-trained convolutional neural networks—ResNet18, ResNet50, VGG16, AlexNet and GoogLeNet—are fine-tuned on these representations, demonstrating up to a 47% improvement in classification accuracy. Furthermore, the approach maintains high accuracy even with only 10% of the original dataset, showcasing its sample efficiency. This work contributes to a scalable and data-efficient solution for reliable condition monitoring in industrial settings, further advancing the use of current signals for fault diagnosis.</p>\",\"PeriodicalId\":13352,\"journal\":{\"name\":\"Iet Electric Power Applications\",\"volume\":\"19 1\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2025-07-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1049/elp2.70074\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Iet Electric Power Applications\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ietresearch.onlinelibrary.wiley.com/doi/10.1049/elp2.70074\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iet Electric Power Applications","FirstCategoryId":"5","ListUrlMain":"https://ietresearch.onlinelibrary.wiley.com/doi/10.1049/elp2.70074","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Deep Transfer Learning Approach Using Filtered Time-Frequency Representations of Current Signals for Bearing Fault Detection in Induction Machines
This paper addresses the challenge of limited labelled data in induction machine fault diagnosis by applying deep transfer learning with convolutional neural networks to classify ball bearing health conditions. Specifically, the objective is to classify ring and cage failures in ball bearings using a limited dataset acquired from an experimental test bench. Unlike traditional approaches that rely on vibration sensors, this study uses noninvasive current signals. Moreover, this study introduces a novel preprocessing approach that filters out the fundamental frequency of the current signal to enhance fault-related harmonics in time–frequency representations generated via continuous wavelet transform and short-time Fourier transform. Five pre-trained convolutional neural networks—ResNet18, ResNet50, VGG16, AlexNet and GoogLeNet—are fine-tuned on these representations, demonstrating up to a 47% improvement in classification accuracy. Furthermore, the approach maintains high accuracy even with only 10% of the original dataset, showcasing its sample efficiency. This work contributes to a scalable and data-efficient solution for reliable condition monitoring in industrial settings, further advancing the use of current signals for fault diagnosis.
期刊介绍:
IET Electric Power Applications publishes papers of a high technical standard with a suitable balance of practice and theory. The scope covers a wide range of applications and apparatus in the power field. In addition to papers focussing on the design and development of electrical equipment, papers relying on analysis are also sought, provided that the arguments are conveyed succinctly and the conclusions are clear.
The scope of the journal includes the following:
The design and analysis of motors and generators of all sizes
Rotating electrical machines
Linear machines
Actuators
Power transformers
Railway traction machines and drives
Variable speed drives
Machines and drives for electrically powered vehicles
Industrial and non-industrial applications and processes
Current Special Issue. Call for papers:
Progress in Electric Machines, Power Converters and their Control for Wave Energy Generation - https://digital-library.theiet.org/files/IET_EPA_CFP_PEMPCCWEG.pdf