Ryan E. Hogans, Yun Lin, Gabriela Grigorean, Ana Cristina Grodzki, Rachel R. Mizenko, Anne Knowlton, Randy P. Carney, Angie Gelli, Pamela J. Lein
{"title":"细胞外囊泡的多组学分析支持它们参与内皮衰老相关的血管功能障碍","authors":"Ryan E. Hogans, Yun Lin, Gabriela Grigorean, Ana Cristina Grodzki, Rachel R. Mizenko, Anne Knowlton, Randy P. Carney, Angie Gelli, Pamela J. Lein","doi":"10.1002/jex2.70078","DOIUrl":null,"url":null,"abstract":"<p>Dysfunction of vascular endothelium is characteristic of many aging-related diseases, including Alzheimer's disease (AD) and AD-related dementias (ADRD). Although it is widely posited that endothelial cell dysfunction contributes to the pathogenesis and/or progression of AD/ADRD, it is not clear how. A plausible hypothesis is that intercellular trafficking of extracellular vesicles (EVs) from senescent vascular endothelial cells promotes vascular endothelial cell dysfunction. To test this hypothesis, we compared the expression of proteins and miRNAs in EVs isolated from four sets of genetically identical early passage non-senescent (EP) versus late passage senescent (SEN) primary human coronary artery endothelial cells (HCAECs) derived from four donors. Proteomics and miRNA libraries constructed from these EV isolates were evaluated using FunRich gene ontology analysis to compare functional enrichment between EP and SEN endothelial cell EVs (ECEVs). Replicative senescence was associated with altered EV abundance and contents independent of changes in EV size. Unique sets of miRNAs and proteins were differentially expressed in SEN-ECEVs, including molecules related to cell adhesion, barrier integrity, receptor signalling, endothelial-mesenchymal transition and cell senescence. miR-181a-5p was the most upregulated miRNA in SEN-ECEVs, increasing >5-fold. SEN-ECEV proteomes supported involvement in several pro-inflammatory pathways consistent with senescence and the senescence-associated secretory phenotype (SASP). These data indicate that SEN-ECEVs are enriched in bioactive molecules implicated in senescence-associated vascular dysfunction, blood–brain barrier impairment, and AD/ADRD pathology. These observations suggest involvement of SEN-ECEVs in the pathogenesis of vascular dysfunction associated with AD/ADRD.</p>","PeriodicalId":73747,"journal":{"name":"Journal of extracellular biology","volume":"4 8","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jex2.70078","citationCount":"0","resultStr":"{\"title\":\"Multiomics Profiling of Extracellular Vesicles Supports Their Involvement in Endothelial Senescence-Associated Vascular Dysfunction\",\"authors\":\"Ryan E. Hogans, Yun Lin, Gabriela Grigorean, Ana Cristina Grodzki, Rachel R. Mizenko, Anne Knowlton, Randy P. Carney, Angie Gelli, Pamela J. Lein\",\"doi\":\"10.1002/jex2.70078\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Dysfunction of vascular endothelium is characteristic of many aging-related diseases, including Alzheimer's disease (AD) and AD-related dementias (ADRD). Although it is widely posited that endothelial cell dysfunction contributes to the pathogenesis and/or progression of AD/ADRD, it is not clear how. A plausible hypothesis is that intercellular trafficking of extracellular vesicles (EVs) from senescent vascular endothelial cells promotes vascular endothelial cell dysfunction. To test this hypothesis, we compared the expression of proteins and miRNAs in EVs isolated from four sets of genetically identical early passage non-senescent (EP) versus late passage senescent (SEN) primary human coronary artery endothelial cells (HCAECs) derived from four donors. Proteomics and miRNA libraries constructed from these EV isolates were evaluated using FunRich gene ontology analysis to compare functional enrichment between EP and SEN endothelial cell EVs (ECEVs). Replicative senescence was associated with altered EV abundance and contents independent of changes in EV size. Unique sets of miRNAs and proteins were differentially expressed in SEN-ECEVs, including molecules related to cell adhesion, barrier integrity, receptor signalling, endothelial-mesenchymal transition and cell senescence. miR-181a-5p was the most upregulated miRNA in SEN-ECEVs, increasing >5-fold. SEN-ECEV proteomes supported involvement in several pro-inflammatory pathways consistent with senescence and the senescence-associated secretory phenotype (SASP). These data indicate that SEN-ECEVs are enriched in bioactive molecules implicated in senescence-associated vascular dysfunction, blood–brain barrier impairment, and AD/ADRD pathology. These observations suggest involvement of SEN-ECEVs in the pathogenesis of vascular dysfunction associated with AD/ADRD.</p>\",\"PeriodicalId\":73747,\"journal\":{\"name\":\"Journal of extracellular biology\",\"volume\":\"4 8\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-07-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jex2.70078\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of extracellular biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://isevjournals.onlinelibrary.wiley.com/doi/10.1002/jex2.70078\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of extracellular biology","FirstCategoryId":"1085","ListUrlMain":"https://isevjournals.onlinelibrary.wiley.com/doi/10.1002/jex2.70078","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Multiomics Profiling of Extracellular Vesicles Supports Their Involvement in Endothelial Senescence-Associated Vascular Dysfunction
Dysfunction of vascular endothelium is characteristic of many aging-related diseases, including Alzheimer's disease (AD) and AD-related dementias (ADRD). Although it is widely posited that endothelial cell dysfunction contributes to the pathogenesis and/or progression of AD/ADRD, it is not clear how. A plausible hypothesis is that intercellular trafficking of extracellular vesicles (EVs) from senescent vascular endothelial cells promotes vascular endothelial cell dysfunction. To test this hypothesis, we compared the expression of proteins and miRNAs in EVs isolated from four sets of genetically identical early passage non-senescent (EP) versus late passage senescent (SEN) primary human coronary artery endothelial cells (HCAECs) derived from four donors. Proteomics and miRNA libraries constructed from these EV isolates were evaluated using FunRich gene ontology analysis to compare functional enrichment between EP and SEN endothelial cell EVs (ECEVs). Replicative senescence was associated with altered EV abundance and contents independent of changes in EV size. Unique sets of miRNAs and proteins were differentially expressed in SEN-ECEVs, including molecules related to cell adhesion, barrier integrity, receptor signalling, endothelial-mesenchymal transition and cell senescence. miR-181a-5p was the most upregulated miRNA in SEN-ECEVs, increasing >5-fold. SEN-ECEV proteomes supported involvement in several pro-inflammatory pathways consistent with senescence and the senescence-associated secretory phenotype (SASP). These data indicate that SEN-ECEVs are enriched in bioactive molecules implicated in senescence-associated vascular dysfunction, blood–brain barrier impairment, and AD/ADRD pathology. These observations suggest involvement of SEN-ECEVs in the pathogenesis of vascular dysfunction associated with AD/ADRD.