{"title":"木质纤维素生物质增值在建筑工业中的最新突破:综述","authors":"Nilanjan Dey, Shakshi Bhardwaj and Pradip K. Maji","doi":"10.1039/D5SU00142K","DOIUrl":null,"url":null,"abstract":"<p >Extensive use of non-ecofriendly construction materials has already caused much damage to the environment. A novel array of green and sustainable construction materials (GSCMs) is required to address this challenge. Alternatives like Lignocellulosic biomass (LCBs) and other bio-based products have drawn the scientific community's attention over time. LCBs are eco-friendly materials originating from natural resources. Owing to their insoluble nature, morphological properties, and higher dimensional aspects, LCBs can be used to fabricate a wide category of biocomposites that can be consumed by the construction industry. However, for ease of research, there is a need for a review article highlighting up-to-date research connecting LCBs with GSCMs. This review provides a comprehensive examination of the numerous components, including cellulose, silica, lignin, and hemicellulose, that are present in LCBs. Furthermore, the review monitored the following: environmental challenges, novel waste recycling methods, modern valorization techniques, innovative applications of LCBs, durability, and performance enhancement. The importance of LCBs in GSCMs, such as biocomposites, bio-based insulating materials, coatings, adhesives, and various other applications, has been thoroughly examined. Finally, this review encompasses a summary of computational methods and life-cycle assessments (LCA) for the development of next-generation construction materials.</p>","PeriodicalId":74745,"journal":{"name":"RSC sustainability","volume":" 8","pages":" 3307-3357"},"PeriodicalIF":4.9000,"publicationDate":"2025-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/su/d5su00142k?page=search","citationCount":"0","resultStr":"{\"title\":\"Recent breakthroughs in the valorization of lignocellulosic biomass for advancements in the construction industry: a review\",\"authors\":\"Nilanjan Dey, Shakshi Bhardwaj and Pradip K. Maji\",\"doi\":\"10.1039/D5SU00142K\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Extensive use of non-ecofriendly construction materials has already caused much damage to the environment. A novel array of green and sustainable construction materials (GSCMs) is required to address this challenge. Alternatives like Lignocellulosic biomass (LCBs) and other bio-based products have drawn the scientific community's attention over time. LCBs are eco-friendly materials originating from natural resources. Owing to their insoluble nature, morphological properties, and higher dimensional aspects, LCBs can be used to fabricate a wide category of biocomposites that can be consumed by the construction industry. However, for ease of research, there is a need for a review article highlighting up-to-date research connecting LCBs with GSCMs. This review provides a comprehensive examination of the numerous components, including cellulose, silica, lignin, and hemicellulose, that are present in LCBs. Furthermore, the review monitored the following: environmental challenges, novel waste recycling methods, modern valorization techniques, innovative applications of LCBs, durability, and performance enhancement. The importance of LCBs in GSCMs, such as biocomposites, bio-based insulating materials, coatings, adhesives, and various other applications, has been thoroughly examined. Finally, this review encompasses a summary of computational methods and life-cycle assessments (LCA) for the development of next-generation construction materials.</p>\",\"PeriodicalId\":74745,\"journal\":{\"name\":\"RSC sustainability\",\"volume\":\" 8\",\"pages\":\" 3307-3357\"},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2025-06-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.rsc.org/en/content/articlepdf/2025/su/d5su00142k?page=search\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"RSC sustainability\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/su/d5su00142k\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"RSC sustainability","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/su/d5su00142k","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Recent breakthroughs in the valorization of lignocellulosic biomass for advancements in the construction industry: a review
Extensive use of non-ecofriendly construction materials has already caused much damage to the environment. A novel array of green and sustainable construction materials (GSCMs) is required to address this challenge. Alternatives like Lignocellulosic biomass (LCBs) and other bio-based products have drawn the scientific community's attention over time. LCBs are eco-friendly materials originating from natural resources. Owing to their insoluble nature, morphological properties, and higher dimensional aspects, LCBs can be used to fabricate a wide category of biocomposites that can be consumed by the construction industry. However, for ease of research, there is a need for a review article highlighting up-to-date research connecting LCBs with GSCMs. This review provides a comprehensive examination of the numerous components, including cellulose, silica, lignin, and hemicellulose, that are present in LCBs. Furthermore, the review monitored the following: environmental challenges, novel waste recycling methods, modern valorization techniques, innovative applications of LCBs, durability, and performance enhancement. The importance of LCBs in GSCMs, such as biocomposites, bio-based insulating materials, coatings, adhesives, and various other applications, has been thoroughly examined. Finally, this review encompasses a summary of computational methods and life-cycle assessments (LCA) for the development of next-generation construction materials.